Skip to main content
Log in

DNA damage in cichlids from an oil production facility in Guatemala

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This study focused on several wetlands in Laguna del Tigre National Park (Guatemala) as part of Conservation International’s Rapid Assessment Program. Sediment and water samples were collected from a laguna near Xan field, Guatemala’s largest oil facility, and three other sites for determination of levels of polycyclic aromatic hydrocarbons (PAHs). Cichlid fish (Thorichthys meeki and Vieja synspila) were collected for determination of DNA strand breakage (by gel electrophoresis), chromosomal breakage (flow cytometry), and fin erosion. For T. meeki from Xan field, chromosomal breakage and strand breakage was greater than in at least two of the three reference sites. For V. synspila, chromosomal breakage and strand breakage were greater in Xan than one of the two reference sites. Fin erosion was observed only at the Xan laguna. Genetic biomarker effects and fin erosion, along with patterns of aqueous PAH concentrations, indicate that fish are affected by anthropogenic contaminants. PAHs were elevated at some reference sites, but environmental forensic analysis suggested a pyrogenic or diagenic origin. It is possible that oil field brines injected into the ground water caused fin erosion and genotoxicity in fish at Xan field, and it is also possible that pyrogenic PAHs influence levels of DNA damage in reference sites. These analyses represent one of the first efforts to examine genotoxicity in native Mesoamerican cichlids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostinho AA, Thomaz SM, Gomes LC (2005) Conservation of the biodiversity of Brazil’s inland waters. Conserv Biol 19:646–652

    Article  Google Scholar 

  • Alonso LE, Bailey AC, Barrientos C, Bestelmeyer BT, Callisto M, Castañeda Moya F, Castillo Villeda ML, Chernoff B, García EJ, Herrera K, Kihn HA, Lara O, León B, Mancilla M, Morales J, Ordoñez J, Ponciano I, Pérez SG, Queral Regil A, Rodríguez OC, Selvin Pérez E, Theodorakis CW, Willink PW, Zarza H (2000) Biological assessment of Laguna del Tigre National Park, Petén Guatemala. RAP Bulletin of Biological Assessment = Boletín RAP de Evaluación Biológica. 16. Conservation International Center for Applied Biodiversity Science, Washington DC

    Google Scholar 

  • Alonso-Alvarez C, Munilla I, López-Alonso M, Velando A (2007) Sublethal toxicity of the prestige oil spill on yellow-legged gulls. Environ Int 33:773–781

    Article  CAS  Google Scholar 

  • Arkoosh MR, Casillas E, Clemons E, Kagley AN, Olson R, Reno P, Stein JE (1998) Effect of pollution on fish diseases: Potential impacts on salmonid populations. J Aquat Anim Health 10:182–190

    Article  Google Scholar 

  • Ashok BT, Saxena S (1995) Biodegradation of polycyclic aromatic-hydrocarbons—a review. J Sci Ind Res India 54:443–451

    CAS  Google Scholar 

  • Barra R, Quiroz R, Saez K, Araneda A, Urrutia R, Popp P (2009) Sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of the biobio river in south Central Chile. Environ Chem Lett 7:133–139

    Article  CAS  Google Scholar 

  • Barron MG, Carls MG, Short JW, Rice SD (2003) Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska North Slope crude oil to Pacific herring eggs and larvae. Environ Toxicol Chem 22:650–660

    Article  CAS  Google Scholar 

  • Barron MG, Carls MG, Short JW, Rice SD, Heintz RA, Rau M, DiGiulio RD (2005) Assessment of the phototoxicity of weathered Alaska North Slope crude oil to juvenile pink Salmon. Chemosphere 60:105–110

    Article  CAS  Google Scholar 

  • Baršienė J, Andreikėnaitė L, Rybakovas A (2006a) Cytogenetic damage in perch (Perca fluviatilis L.) and duck mussel (Anodonta anatina L.) exposed to crude oil. Ekologija 1:25–31

    Google Scholar 

  • Baršienė J, Dedonyte V, Rybakovas A, Andreikenaite L, Andersen OK (2006b) Investigation of micronuclei and other nuclear abnormalities in peripheral blood and kidney of marine fish treated with crude oil. Aquat Toxicol 78:S99–S104

    Article  Google Scholar 

  • Bickham JW (1990) Flow cytometry as a technique to monitor the effects of environmental genotoxins on wildlife populations. In: Sandhu S, Lower WR, DeSerres FJ, Suk WA, Tice RR (eds) In situ evaluation of biological hazard of environmental pollutants. Environmental research series vol. 38. Plenum Press, New York, pp 97–108

    Google Scholar 

  • Bickham JW, Mazet JA, Blake J, Smolen MJ, Ballachey BE (1998a) Flow cytometric determination of genotoxic effects of exposure to petroleum in Mink and sea Otters. Ecotoxicology 7:191–199

    Article  CAS  Google Scholar 

  • Bickham J, Rowe G, Palatnikov G, Mekhtiev A, Mekhtiev M, Kasimov RY, Hauschultz D, Wickliffe J, Rogers W (1998b) Acute and genotoxic effects of Baku Harbor sediment on Russian sturgeon, Acipenser guildensteidti. Bull Environ Contam Toxicol 61:512–518

    Article  CAS  Google Scholar 

  • Bickham JW, Sandhu S, Hebert PDN, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res-Rev Mutat Res 463:33–51

    Article  CAS  Google Scholar 

  • Bihari N, Fafanel M (2004) Interspecies differences in DNA single strand breaks caused by benzo(a)pyrene and marine environment. Mutat Res-Fund Mol M 552:209–217

    Article  CAS  Google Scholar 

  • Bolognesi C, Perrone E, Roggieri P, Pampanin DM, Sciutto A (2006) Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquat Toxicol 78:S93–S98

    Article  CAS  Google Scholar 

  • Carls M, Heintz R, Marty G, Rice S (2005) Cytochrome P4501A induction in oil-exposed pink Salmon Oncorhynchus gorbuscha embryos predicts reduced survival potential. Mar Ecol Prog Ser 301:253–265

    Article  CAS  Google Scholar 

  • Chen B, Xuan X, Zhu L, Wang J, Gao Y, Yang K, Shen X, Lou B (2004) Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 38:3558–3568

    Article  CAS  Google Scholar 

  • Colombo JC, Cappelletti N, Lasci J, Migoya MC, Esperanza E, Skorupka CN (2006) Sources, vertical fluxes, and equivalent toxicity of aromatic hydrocarbons in coastal sediments of the Rio de la Plata estuary, Argentina. Environ Sci Technol 40:734–740

    Article  CAS  Google Scholar 

  • Costa FO, Neuparth T, Costa MH, Theodorakis CW, Shugart LR (2002) Detection of DNA strand breakage in a marine amphipod by agarose gel electrophoresis: exposure to X-rays and copper. Biomarkers 7:451–463

    Article  CAS  Google Scholar 

  • Couillard CM, Lee K, Légaré BÎ, King TL (2005) Effect of dispersant on the composition of the water-accommodated fraction of crude oil and its toxicity to larval marine fish. Environ Toxicol Chem 24:1496–1504

    Article  CAS  Google Scholar 

  • Countway RE, Dickhut RM, Canuel EA (2003) Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA estuary. Org Geochem 34:209–224

    Article  CAS  Google Scholar 

  • Cronin MW, Bickham JW (1998) A population genetic analysis of the potential for a crude oil spill to induce heritable mutations and impact natural populations. Ecotoxicology 7:259–278

    Article  Google Scholar 

  • Custer T, Custer C, Hines R, Sparks D, Melancon M, Hoffman D, Bickham J, Wickliffe J (2000) Mixed-function oxygenases, oxidative stress, and chromosomal damage measured in lesser scaup wintering on the Indiana Harbor Canal. Arch Environ Contam Toxicol 38:522–529

    Article  CAS  Google Scholar 

  • Deasi S, Verlecar X, Ansari Z, Jagtap T, Sarkar A, Vashistha D, Dalal S (2010) Evaluation of genotoxic responses of Chaetoceros tenuissimus and Skeletonema costatum to water accommodated fraction of petroleum hydrocarbons as biomarker of exposure. Water Res 44:2235–2244

    Article  Google Scholar 

  • Di Toro DM, McGrath JA, Stubblefield WA (2007) Predicting the toxicity of neat and weathered crude oil: toxic potential and the toxicity of saturated mixtures. Environ Toxicol Chem 26:24–36

    Article  CAS  Google Scholar 

  • Doong R, Lin YU (2004) Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-Ping River, Taiwan. Water Res 38(7):1733–1744

    Article  CAS  Google Scholar 

  • Freeman SE, Thompson BD (1990) Quantitation of ultraviolet radiation-induced cyclobutyl pyrimidine dimers in DNA by video and photographic densitometry. Anal Biochem 186:222–228

    Article  CAS  Google Scholar 

  • Fu J, Sheng S, Wen T, Zhang Z-M, Wang Q, Hu Q-X, Li Q-S, An S-Q, Zhu H-L (2011) Polycyclic aromatic hydrocarbons in surface sediments of the Jialu River. Ecotoxicology 20:940–950

    Article  CAS  Google Scholar 

  • Garrigues P, Budzinski H, Manitz M, Wise S (1995) Pyrolytic and petrogenic inputs in recent sediments: a definitive signature through phenanthrene and chrysene compound distribution. Polycycl Aromat Comp 7:275–284

    Article  CAS  Google Scholar 

  • Goanvec C, Theron M, Lacoue-Labarthe T, Poirier E, Guyomarch J, Le-Floch S, Laroche J, Nonnotte L, Nonnotte G (2008) Flow cytometry for the evaluation of chromosomal damage in turbot Psetta maxima (L.) exposed to the dissolved fraction of heavy fuel oil in sea water: a comparison with classical biomarkers. J Fish Biol 73:395–413

    Article  CAS  Google Scholar 

  • Guo W, He M, Yang Z, Lin C, Quan X, Wang H (2007) Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere 68:93–104

    Article  CAS  Google Scholar 

  • Harvey J, Lyons B, Page T, Stewart C, Parry J (1999) An assessment of the genotoxic impact of the Sea Empress oil spill by the measurement of DNA adduct levels in selected invertebrate and vertebrate species. Mutat Res-Gen Tox En 441:103–114

    Article  CAS  Google Scholar 

  • Hylland K (2006) Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J Toxicol Env Heal A 69:109–123

    Article  CAS  Google Scholar 

  • Jha AN (2004) Genotoxicological studies in aquatic organisms. Mutat Res-Fund Mol M 552(1–2):1–17

    Article  CAS  Google Scholar 

  • Keenleyside MHA (1991) Cichlid fishes: behaviour, ecology and evolution. Chapman and Hall, New York

    Google Scholar 

  • Ko FC, Baker J, Fang MD, Lee CL (2007) Composition and distribution of polycyclic aromatic hydrocarbons in the surface sediments from the Susquehanna River. Chemosphere 66:277–285

    Article  CAS  Google Scholar 

  • Laffon B, Fraga-Iriso R, Pérez-Cadahía B, Méndez J (2006) Genotoxicity associated to exposure to prestige oil during autopsies and cleaning of oil-contaminated birds. Food Chem Toxicol 44:1714–1723

    Article  CAS  Google Scholar 

  • Landsberg J, Blakesley B, Reese R, McRae G, Forstchen P (1998) Parasites of fish as indicators of environmental stress. Environ Monit Assess 51:211–232

    Article  Google Scholar 

  • Levin W, Wood A, Chang R, Ryan D, Thomas P, Yagi H, Thakker D, Vyas K, Boyd C, Chu SY (1982) Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens. Drug Metab Rev 13:555–580

    Article  CAS  Google Scholar 

  • Li J, Ma M, Cui Q, Wang Z (2008) Assessing the potential risk of oil-field produced waters using a battery of bioassays/biomarkers. Bull Environ Contam Toxicol 80:492–496

    Article  CAS  Google Scholar 

  • Li J, Shang X, Zhao Z, Tanguay RL, Dong Q, Huang C (2010) Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China. J Hazard Mater 173:75–81

    Article  CAS  Google Scholar 

  • Liu B, Romaire R, Delaune R, Lindau C (2006) Field investigation on the toxicity of Alaska North Slope crude oil (ANSC) and dispersed ANSC crude to gulf killifish, Eastern oyster and white shrimp. Chemosphere 62:520–526

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuary sediments. Environ Manage 19:81–97

    Article  Google Scholar 

  • Loughlin TR (1994) Marine mammals and the Exxon Valdez. Academic Press, San Diego

    Google Scholar 

  • McIntosh S, King T, Wu D, Hodson PV (2010) Toxicity of dispersed weathered crude oil to early life stages of Atlantic herring (Clupea harengus). Environ Toxicol Chem 29:1160–1167

    CAS  Google Scholar 

  • Mille G, Munoz D, Jacquot F, Rivet L, Bertrand JC (1998) The Amoco Cadiz oil spill, evolution of petroleum hydrocarbons in the Iie Grande salt marshes (Brittany) after a 13-year period. Estuar Coast Shelf S 47:547–559

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • [NASA] National Aeronautics and Space Administration (2008). http://earthobservatory.nasa.gov/IOTD/view.php?id=5338. Accessed 25 Aug 2010

  • Neuparth T, Bickham J, Theodorakis C, Costa F, Costa M (2006) Endosulfan-induced genotoxicity detected in the gilthead seabream, Sparus aurata L., by means of flow cytometry and micronuclei assays. Bull Environ Contam Toxicol 76:242–248

    Article  CAS  Google Scholar 

  • Neuparth T, Costa FO, Theodorakis CW, Costa MH, Bickham JW (2009) Assessment of DNA damage in blood cells of Sparus aurata L. exposed to benzo[a]pyrene using three distinct genotoxicity assays. Fresenius Environ Bull 18:461–467

    CAS  Google Scholar 

  • Odeigah P, Nurudeen O, Amund O (1997) Genotoxicity of oil field wastewater in Nigeria. Hereditas 126:161–167

    Article  Google Scholar 

  • Page DS, Boehm PD, Stubblefield WA, Parker KR, Gilfillan ES, Neff JM, Maki AW (2002) Hydrocarbon composition and toxicity of sediments following the Exxon Valdez oil spill in Prince William Sound, Sound, Alaska, USA. Environ Toxicol Chem 21:1438–1450

    CAS  Google Scholar 

  • Pérez-Cadahía B, Laffon B, Pásaro E, Méndez J (2004) Evaluation of PAH bioaccumulation and DNA damage in mussels (Mytilus galloprovincialis) exposed to spilled Prestige crude oil. Comp Biochem Phys C 138:453–460

    Google Scholar 

  • Pies C, Hoffmann B, JPetrowsky J, Yang Y, Ternes TA, Hofmann T (2008) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72:1594–1601

    Article  CAS  Google Scholar 

  • Qiao M, Wang CX, Huang SB, Wang DH, Wang ZJ (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32:28–33

    Article  CAS  Google Scholar 

  • Quiroz R, Popp P, Urrutia R, Bauer C, Araneda A, Treutler HC, Barra R (2005) PAH fluxes in the Laja Lake of south central Chile Andes over the last 50 years: evidence from a dated sediment core. Sci Total Environ 349:150–160

    Article  CAS  Google Scholar 

  • Scolo HH, Garrigues PH, Ewald M (2000) Origin of Polycyclic aromatic hydrocarbons (PAH’s) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Poll Bull 40:387–396

    Article  Google Scholar 

  • Shugart LR, Bickham J, Jackim G, McMahon G, Ridley W, Stein J, Steinert S (1992) DNA alterations. In: Huggett RJ, Kimerle RA, Mehrle PM Jr, Bergman HL (eds) Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. Lewis Publishers, Boca Raton, pp 125–154

    Google Scholar 

  • Shugart LR, Theodorakis C, Bickham JW (2010) Evolutionary toxicology. In: DeWoody JA, Bickham JW, Michler CH, Nichols KM, Rhodes OE, Woeste KE (eds) Molecular approaches in natural resource conservation and management. Cambridge University Press, New York, pp 320–362

    Google Scholar 

  • Taban IC, Bechmann RK, Torgrimsen S, Baussant T, Sanni S (2004) Detection of DNA damage in mussels and sea urchins exposed to crude oil using comet assay. Mar Environ Res 58:701–705

    Article  CAS  Google Scholar 

  • Theodorakis CW (2008) Mutagenesis. In: Jørgensen SE (ed) Encyclopedia of ecology. Elsevier, Amsterdam, pp 2475–2484

    Chapter  Google Scholar 

  • Theodorakis C, D’surney S, Bickham J, Lyne T, Bradley B, Hawkins W, Farkas W, McCarthy J, Shugart L (1992) Sequential expression of biomarkers in bluegill sunfish exposed to contaminated sediment. Ecotoxicology 1:45–73

    Article  CAS  Google Scholar 

  • Theodorakis CW, D’Surney SJ, Shugart LR (1994) Detection of genotoxic insult as DNA strand breaks in fish blood cells by agarose gel electrophoresis. Environ Toxicol Chem 13:1023–1031

    Article  CAS  Google Scholar 

  • Theodorakis CW, Blaylock BG, Shugart LR (1997) Genetic ecotoxicology I: DNA integrity and reproduction in mosquitofish exposed in situ to radionuclides. Ecotoxicology 6:205–218

    Article  CAS  Google Scholar 

  • Theodorakis CW, Elbl T, Shugart LR (1999) Genetic ecotoxicology IV: survival and DNA strand breakage is dependent on genotype in radionuclide-exposed mosquitofish. Aquat Toxicol 45:279–291

    Article  CAS  Google Scholar 

  • Theodorakis CW, Swartz CD, Rogers WJ, Bickham JW, Donnelly K, Adams SM (2000) Relationship between genotoxicity, mutagenicity, and fish community structure in a contaminated stream. J Aquat Ecosys Stress Recovery 7:131–143

    Article  CAS  Google Scholar 

  • Theodorakis CW, Bickham JW, Lamb T, Medica PA, Lyne TB (2001) Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada Test Site, USA. Environ Toxicol Chem 20:317–326

    CAS  Google Scholar 

  • Vindeløv LL, Christensen IJ (1990) A review of techniques and results obtained in one laboratory by an integrated system of methods designed for routine clinical flow cytometric DNA analysis. Cytom Part A 11:753–770

    Article  Google Scholar 

  • Vindeløv LL, Christensen IJ, Keiding N, Spang-Thomsen M, Nissen NI (1983) Long-term storage of samples for flow cytometric DNA analysis. Cytom Part A 3:317–322

    Article  Google Scholar 

  • Wang Z, Brown C (2008) Chemical fingerprinting of petroleum hydrocarbons. In: Mudge SM (ed) Methods in environmental forensics. CRC Press, Boca Raton, pp 43–112

    Chapter  Google Scholar 

  • Wang Z, Fingas M, Shu Y, Sigouin L, Landriault M, Lambert P, Turpin R, Campagna P, Mullin J (1999) Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs—the 1994 mobile burn study. Environ Sci Technol 33:3100–3109

    Article  CAS  Google Scholar 

  • Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and repairability. Prog Nucl Acids Res Mol Biol 35:95–125

    Article  CAS  Google Scholar 

  • Xu C-J, Zhou X, Zhang G-F, Yuang G-X, Shi D-Y (2010) Research on chromosome aberration of horsebean root tips induced by oil produced waste water. Heilongjiang Agricultural Sciences [online]. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HLJN201001005.htm

  • Zhang S, Zhang Q, Darisaw S, Ehie O, Wang G (2007) Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere 66:1057–1069

    Article  CAS  Google Scholar 

  • Zhu L, Chen Y, Zhou R (2008) Distribution of polycyclic aromatic hydrocarbons in water, sediment and soil in drinking water resource of Zhejiang Province, China. J Haz Mat 150:308–316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is dedicated to the memory of K.C. Donnelly, an exceptional friend, excellent colleague, and outstanding scientist. The authors would like to thank Barry Chernoff (Department of Biology, Wesleyan University, Middletown, CT, USA), Herman Kinh (Unidad de Investigación, Vida Silvestre, Guatemala City, Guatemala) and Christian Barrientos (CI-ProPetén, Ciudad Flores, Guatemala) for their assistance in field collections; Greg Love and Leeanne Alonso (Conservation International, Washington, DC, USA) for technical and logistical assistance; and the Las Guacamayas Biological Field Research Station, Petén, Guatemala, for use of facilities. This research was conducted in collaboration with ProPetén, Flores, Guatemala, and was funded in part by Conservation International, Washington, DC, and by NIEHS grant number ES04917. This study was presented in part at the 21st Annual Meeting of the Society of Environmental Toxicology and Chemistry, 12–16 November 2000, Nashville, TN, and is publication No. 102 of the Center for Biosystematics and Biodiversity, Texas A&M University. The intent of this article is purely for dissemination of scientific knowledge, and is neither endorsement nor condemnation of the activities of any corporation, their employees or subsidiaries, nor to imply liability on their part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Bickham.

Additional information

Kirby C. Donnelly—Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodorakis, C.W., Bickham, J.W., Donnelly, K.C. et al. DNA damage in cichlids from an oil production facility in Guatemala. Ecotoxicology 21, 496–511 (2012). https://doi.org/10.1007/s10646-011-0811-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0811-1

Keywords

Navigation