Skip to main content
Log in

Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The present work aimed at evaluating the toxicity and genotoxicity of two organic (vesicles composed of sodium dodecyl sulphate/didodecyl dimethylammonium bromide—SDS/DDAB and of monoolein and sodium oelate—Mo/NaO) and four inorganic (titanium oxide—TiO2, silicon titanium—TiSiO4, Lumidot-CdSe/ZnS, and gold nanorods) nanoparticles (NP), suspended in two aqueous media (Milli Q® water and American Society for Testing and Materials (ASTM) hardwater), to the bacteria Vibrio fischeri (Microtox® test) and Salmonella typhimurium-his (Ames® test with strains TA98 and TA100). Aiming a better understanding of these biological responses physical and chemical characterization of the studied NP suspensions was carried out. Results denoted a high aggregation state of the NP in the aqueous suspensions, with the exception of SDS/DDAB and Mo/NaO vesicles, and of nanogold suspended in Milli Q water. This higher aggregation was consistent with the low values of zeta potential, revealing the instability of the suspensions. Regarding toxicity data, except for nano TiO2, the tested NP significantly inhibited bioluminescence of V. fischeri. Genotoxic effects were only induced by SDS/DDAB and TiO2 for the strain TA98. A wide range of toxicity responses was observed for the six tested NP, differing by more than 5 orders of magnitude, and suggesting different modes of action of the tested NP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and Zn water suspensions. Water Res 40:3527–3532

    Article  CAS  Google Scholar 

  • American Society for testing and Materials (ASTM) (1985) Methods of test for zeta potential of colloids in water and waste water, D4187-82, Philadelphia

  • American Society for testing, Materials (ASTM) (2002) Standard guide for conducting acute toxicity tests on test materials with fishes, microinvertebrates, and amphibians. Annual Book of American Society of Testing and Materials Standards, Philadelphia, pp 729–796

    Google Scholar 

  • Antunes FE, Marques EF, Gomes R, Thuresson K, Lindman B, Miguel MG (2004) Network formation of catanionic vesicles and oppositely charged polyelectrolytes. Effect of polymer charge density and hydrophobic modification. Langmuir 20:4647–4656

    Article  CAS  Google Scholar 

  • AZUR Environmental (1998) Microtox® Omni Manual. Microbics Corporation, Carlsbad

    Google Scholar 

  • Baalousha M, Mansiulea A, Cumberland S, Kendall K, Lead JR (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27:1875–1882

    Article  CAS  Google Scholar 

  • Bhattacharjee S, de Haan LHJ, Evers NM, Jiang X, Marcelis ATM, Zuilhaf H, Rietjens IMCM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7:1–12

    Article  Google Scholar 

  • Blaise C, Gagné F, Férard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23:591–598

    Article  CAS  Google Scholar 

  • Borné J, Nylander T, Khan A (2003) Vesicle formation and other structures in aqueous dispersions of monoolein and sodium oleate. J Colloidal Int Sci 257:310–320

    Article  Google Scholar 

  • Bramer T, Dew N, Edsman K (2010) Pharmaceutical applications for catanionic mixtures. J Pharm Pharmacol 59:1319–1334

    Article  Google Scholar 

  • Card JF, Magnuson BA (2010) A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int J Toxicol 29:402–410

    Article  CAS  Google Scholar 

  • Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  Google Scholar 

  • Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90

    Article  CAS  Google Scholar 

  • French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359

    Article  CAS  Google Scholar 

  • Goodman CM, McCusker C, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconj Chem 15:897–900

    Article  CAS  Google Scholar 

  • Guzmán KAD, Taylor MR, Banfield JF (2006) Environmental risks of nanotechnology: national nanotechnology funding, 2000–2004. Environ Sci Technol 40:1401–1407. http://pubs.acs.org

    Google Scholar 

  • Hardman R (2006) A toxicological review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  • Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344–361

    Article  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 13:225–232

    Article  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  • Kato H, Suzuki M, Fujita K, Horie M, Endoh S, Yoshida Y, Iwahashi H, Takahashi K, Nakamura A, Kinugasa S (2009) Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol In Vitro 23:927–934

    Article  CAS  Google Scholar 

  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stollzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nanoletters 5:331–338

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Hande RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557

    Article  CAS  Google Scholar 

  • Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations-many questions, some answers. Mut Res 681:241–258

    Article  CAS  Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    Article  CAS  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137

    Article  CAS  Google Scholar 

  • Malvern Instruments (2008) Zetasizer Nano User Manual. MAN 0317–4.0. Malvern Instruments Ltd., Malvern

    Google Scholar 

  • Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mut Res 113:173–215

    CAS  Google Scholar 

  • Medintz IL, Uyeda TH, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mut Res 455:29–60

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Oberdörster G (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  Google Scholar 

  • Organization for Economic Cooperation and Development (OECD) (1997) Guidelines for the testing of chemicals. Bacteria reverse mutation test Guideline TG 471. http://www.oecd.org/dataoecd/18/31/1948418.pdf. Accessed 22 Dec 2010

  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  Google Scholar 

  • Pottier A, Cassaignon S, Chanéac C, Villain F, Tronc E, Jolivet J-P (2003) Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J Chem Mat 13:877–882

    Article  CAS  Google Scholar 

  • Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  CAS  Google Scholar 

  • RSRAE (2004) Nanoscience and nanotechnologies: opportunities and uncertainities. Royal Society and Royal Academy of Engineering, Final Report. http://www.nanotec,org.uk/final/Report.htm. Accessed 22Dec 2010

  • Sayes CM, Warheit DB (2009) Characterization of nanomaterials for toxicity assessment. WIREs Nanomed Nanobiotechnol 1:661–670

    Article  Google Scholar 

  • SCENIHR (2007a) Opinion on the scientific aspects of the existing and proposed definitions relating to products of nanoscience and nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks, European Commission, Brussels

    Google Scholar 

  • SCENIHR (2007b) The appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials. European Commission, Brussels

    Google Scholar 

  • Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360:794–802

    Article  CAS  Google Scholar 

  • Sharma C, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson BL, Ramesh GT (2007) Single-walled carbon nanotubes induce oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7:2466–2472

    Article  CAS  Google Scholar 

  • Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ, Doak SH (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  Google Scholar 

  • Tetley TD (2007) Health effects of nanomaterials. Biochem Soc Trans 35:527–531

    Article  CAS  Google Scholar 

  • USEPA (1998) Health effects test guidelines. OPPTS 870.5100 Bacterial reverse mutation test. EPA 712-C-98_247. United States Environmental Protection Agency, Washington

    Google Scholar 

  • Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420

    Article  CAS  Google Scholar 

  • Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128

    Article  CAS  Google Scholar 

  • Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101:183–185

    Article  CAS  Google Scholar 

  • Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110

    Article  CAS  Google Scholar 

  • Yang JY, Jang JY, Lim EH, Lim YW, Kim CS, Chun JW, Shin DC (2007) Mutagenicity of titanium dioxide nano-particles. In: Nanotechnology 2007 conference program abstract (personal/poster presentation), Santa Clara

  • Yuranova T, Laub D, Kiwi J (2007) Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation. Catal Today 122:109–117

    Article  CAS  Google Scholar 

  • Zhang W (2005) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Fundação para a Ciência e a Tecnologia through two Pos-Doc scholarships (SFRH/BD/26801/2006 and SFRH/BPD/65410/2009), FSE and POPH funds (Programa Ciência 2007), and through the bilateral cooperation FCT/CNPq. Thanks are also due to Ineide Pinheiro, for all the assistance given with the manipulation and usage of the Malvern equipment and software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, I., Ribeiro, R., Antunes, F.E. et al. Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium . Ecotoxicology 21, 637–648 (2012). https://doi.org/10.1007/s10646-011-0808-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0808-9

Keywords

Navigation