Skip to main content
Log in

Flow cytometric analysis to evaluate physiological alterations in herbicide-exposed Chlamydomonas moewusii cells

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Investigation of herbicide toxicology in non-target aquatic primary producers such as microalgae is of great importance from an ecological point of view. In order to study the toxicity of the widely used herbicide paraquat on freshwater green microalga Chlamydomonas moewusii, physiological changes associated with 96 h-exposures to this pollutant were monitored using flow cytometry (FCM) technique. Intracellular reactive oxygen species concentration, cytoplasmic membrane potential, metabolic activity and cell protein content were monitored to evaluate the toxicological impact of paraquat on algal physiology. Results showed that herbicide paraquat induced oxidative stress in C. moewusii cells, as it indicated the increase of both superoxide anion and hydrogen peroxide levels observed in non-chlorotic cells of cultures exposed to increasing herbicide concentrations. Furthermore, a progressive increase in the percentage of depolarised cells and a decrease in the metabolic activity level were observed in response to paraquat when non-chlorotic cells were analysed. Chlorotic cells were probably non-viable cells, based on the cytoplasmic membrane depolarisation, its metabolically non-active state and its drastically reduced protein content. In view of the obtained results, we have concluded that a range of significant physiological alterations, detected by flow cytometry, occur when C. moewusii, an ubiquitous microalga in freshwater environments, is challenged with environmentally relevant concentrations of the herbicide paraquat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AbdEl-Aty AM, El-Dib MA (2009) Uptake and the effects of cyanazine on Scenedesmus obliquus and Anabaena flos-aquae. Desalination 249:1294–1297

    Article  CAS  Google Scholar 

  • Adler NE, Schmitt-Jansen M, Altenburger R (2007) Flow cytometry as a tool to study phytotoxic modes of action. Environ Toxicol Chem 26:297–306

    Article  CAS  Google Scholar 

  • Agustí S, Satta MP, Mura MP, Benavent E (1998) Dissolved esterase activity as a tracer of phytoplankton lysis: evidence of high phytoplankton lysis rates in the northwestern Mediterranean. Limnol Oceanogr 43:1836–1849

    Google Scholar 

  • Ananieva EA, Alexieva VS, Popova LP (2002) Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J Plant Physiol 159:685–693

    Article  CAS  Google Scholar 

  • Ananieva EA, Christov KN, Popova LP (2004) Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. J Plant Physiol 161:319–328

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Bacchetta R, Manteca P, Vailati G (2002) Oocyte degeneration and altered ovipository activity induced by paraquat in the freshwater snail Physa fontinalis (Gastropoda: Pulmonata). J Moll Stud 68:181–186

    Article  Google Scholar 

  • Ben Amor K, Breeuwer P, Verbaarschoot P, Rombouts FM, Akkermans ADL, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile sat stress. Appl Environ Microbiol 68:5209–5216

    Article  CAS  Google Scholar 

  • Benov L, Sztejnberg L, Fridovich I (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radical Biol Med 25:826–831

    Article  CAS  Google Scholar 

  • Blaise C, Ménard L (1998) A micro-algal solid phase test to assess the toxic potential of freshwater sediments. Water Qual Res J Can 33:133–151

    CAS  Google Scholar 

  • Brown TE, Richardson FL, Vaughn ML (1967) Development of red pigmentation in Chlorococcum wimmeri (Chlorophyta: Chlorococcales). Phycologia 6:167–184

    Article  CAS  Google Scholar 

  • Bus JS, Gibson JE (1984) Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 55:37–46

    Article  CAS  Google Scholar 

  • Castro R, Moyano E, Galceran MT (1999) Ion-pair liquid chromatography-atmospheric pressure ionization mass spectrometry for the determination of quaternary ammonium herbicides. J Chromatogr A 830:145–154

    Article  CAS  Google Scholar 

  • Caux P-Y, Ménard L, Kent RA (1996) Comparative study of the effects of MCPA, butylate, atrazine, and cyanazine on Selenastrum capricornutum. Environ Pollut 92:219–225

    Article  CAS  Google Scholar 

  • Cid A, Fidalgo P, Herrero C, Abalde J (1996) Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry. Cytometry 25:32–36

    Article  CAS  Google Scholar 

  • Cochón AC, Della Penna AB, Kristoff G, Piol MN, Martín San, de Viale LC, Verrengia Guerrero NR (2007) Differential effects of paraquat on oxidative stress parameters and poliamine levels in two freshwater invertebrates. Ecotoxicol Environ Saf 68:286–292

    Article  Google Scholar 

  • Daam MA, Rodrigues AMF, Van den Brink PJ, Nogueira AJA (2009) Ecological effects of the herbicide linuron in tropical freshwater microcosms. Ecotoxicol Environ Saf 72:410–423

    Article  CAS  Google Scholar 

  • Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13:795–808

    Article  CAS  Google Scholar 

  • Davies KJA (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J Biochem Chem 262:9895–9901

    CAS  Google Scholar 

  • De Lorenzo ME, Taylor LA, Lund SA, Pennington PL, Strozier ED, Fulton MH (2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch Environ Contam Toxicol 42:173–181

    Article  Google Scholar 

  • Deneer JW (2000) Toxicity of mixtures of pesticides in aquatic systems. Pest Manag Sci 56:516–520

    Article  CAS  Google Scholar 

  • Dikshit M, Sharma P (2001) Nitric oxide mediated modulation of free radical generation response in the rat polymorphonuclear leukocytes: a flow cytometric study. Methods Cell Sci 24:69–76

    Article  Google Scholar 

  • Dorsey J, Yentsch CM, Mayo S, McKenna C (1989) Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae. Cytometry 10:622–628

    Article  CAS  Google Scholar 

  • Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM (1988) Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys J 53:785–794

    Article  CAS  Google Scholar 

  • Eisler R (1990) Paraquat hazards to fish, wildlife, and invertebrates: a synoptic review. Contaminant Hazard Reviews. US Fish Wild Serv Biol Rep 85(1.22):28

    Google Scholar 

  • Ekmekci Y, Terzioglu S (2005) Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic Biochem Physiol 83:69–81

    Article  CAS  Google Scholar 

  • Elias PM, Goerke J, Friend DS (1978) Freeze-fracture identification of sterole-digitonin complexes in cell and liposome membranes. J Cell Biol 78:577–596

    Article  CAS  Google Scholar 

  • Eullaffroy P, Vernet G (2003) The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae. Water Res 37:1983–1990

    Article  CAS  Google Scholar 

  • Franklin NM, Adams MS, Stauber JL, Lim RP (2001) Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch Environ Contam Toxicol 40:469–480

    Article  CAS  Google Scholar 

  • Franqueira D, Cid A, Torres E, Orosa M, Herrero C (1999) A comparison of the relative sensitivity of structural and functional cellular responses in the alga Chlamydomonas eugametos exposed to the herbicide paraquat. Arch Environ Contam Toxicol 36:264–269

    Article  CAS  Google Scholar 

  • Franqueira D, Orosa M, Torres E, Herrero C, Cid A (2000) Potential use of flow cytometry in toxicity studies with microalgae. Sci Total Environ 247:119–126

    Article  CAS  Google Scholar 

  • Fuerst EP, Vaughn KC (1990) Mechanisms of paraquat resistance. Weed Technol 4:150–156

    Google Scholar 

  • Gala W, Giesy JP (1990) Flow cytometric techniques to assess toxicity to algae. In: Landis WG, van der Schalie WH (eds) Aquatic toxicology and risk assessment, thirteenth volume. ASTM TP 1096. American Society for Testing and Materials, Philadelphia, pp 237–246

    Chapter  Google Scholar 

  • Gilbert F, Galgani F, Cadiou Y (1992) Rapid assessment of metabolic activity in marine microalgae: application in ecotoxicological tests and evaluation of water quality. Mar Biol 112:199–205

    Article  CAS  Google Scholar 

  • Hadjoudja S, Vignoles C, Delucht V, Lenain JF, Le Jeune AH, Baudu M (2009) Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry. Aquat Toxicol 94:255–264

    Article  CAS  Google Scholar 

  • Henderson LM, Chappell JB (1993) Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur J Biochem 217:973–980

    Article  CAS  Google Scholar 

  • Ibrahim EA (1990) The influence of the herbicide paraquat “gramoxon” on growth and metabolic activity of three chlorophytes. Water Air Soil Pollut 51:89–93

    Article  CAS  Google Scholar 

  • Jamers A, De Coen W (2010) Effect assessment of the herbicide paraquat on a green alga using differential gene expression and biochemical biomarkers. Environ Toxicol Chem 29:893–901

    Article  Google Scholar 

  • Jamers A, Lenjou M, Deraedt P, Van Bockstaele D, Blust R, de Coen W (2009) Flow cytometryc analysis of the cadmium-exposed green alga Chlamydomonas reinhardtii (Chlorophyceae). Eur J Phycol 44:541–550

    Article  CAS  Google Scholar 

  • Jepras RI, Carter J, Pearson SC, Paul FE, Wilkinson MJ (1995) Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl Environ Microbiol 61:2696–2701

    CAS  Google Scholar 

  • Jepras RI, Paul FE, Pearson SC, Wilkinson MJ (1997) Rapid assessment of antibiotic effects on Escherichia coli by bis-(1, 3-dibutylbarbituric acid) trimethine oxonol and flow cytometry. Antimicrob Agents Chemother 41:2001–2005

    CAS  Google Scholar 

  • Jochem FJ (1999) Dark survival strategies in marine phytoplankton assessed by cytometric measurement of metabolic activity with fluorescein diacetate. Mar Biol 135:721–728

    Article  CAS  Google Scholar 

  • Juan G, Cavazzoni M, Sáez GT, O’Connor J-E (1994) A fast kinetic method for assessing mitochondrial membrane potential in isolated hepatocytes with rhodamine 123 and flow cytometry. Cytometry 15:335–342

    Article  CAS  Google Scholar 

  • Jung IL, Kim IG (2003) Thiamine protects against paraquat-induced damage: scavenging activity of reactive oxygen species. Environ Toxicol Pharmacol 15:19–26

    Article  CAS  Google Scholar 

  • Katsumata H, Kaneco S, Suzuki T, Ohta K (2006) Determination of atrazine and simazine in water samples by high-performance liquid chromatography after preconcentration with heat-treated diatomaceous earth. Anal Chim Acta 577:214–219

    Article  CAS  Google Scholar 

  • Kish PA (2006) Evaluation of herbicide impact on periphyton community structure using the Matlock periphytometer. J Freshwater Ecol 21:341–348

    Article  CAS  Google Scholar 

  • Konrad KR, Hedrich R (2008) The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells. Plant J 55:161–173

    Article  CAS  Google Scholar 

  • Kuin H, Koerten H, Ghijsen WEJM, Munnik T, van den Ende H, Musgrave A (2000) Chlamydomonas contains calcium stores that are mobilized when phospholipase C is activated. Planta 210:286–294

    Article  CAS  Google Scholar 

  • Lage OM, Sansonetty F, O’Connor J-E, Parente AM (2001) Flow cytometric analysis of chronic and acute toxicity of copper (II) on the marine dinoflagellate Amphidinium carterae. Cytometry 44:226–235

    Article  CAS  Google Scholar 

  • Liu Z, Zhang X, Bai J, Suo B, Xu P, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hortic 121:138–143

    Article  CAS  Google Scholar 

  • Lloyd D, Hayes AJ (1995) Vigour, vitality and viability of microorganisms. FEMS Microbiol Lett 133:1–7

    Article  CAS  Google Scholar 

  • Lloyd D, Harris JC, Biagini GA, Hughes MR, Maroulis S, Bernard C, Wadley RB, Edwards MR (2004) The plasma membrane of microaerophilic protists: oxidative and nitrosative stress. Microbiology 150:1183–1190

    Article  CAS  Google Scholar 

  • Muller R, Schreiber U, Escher BI, Quayle P, Bengtson Nash SM, Mueller JF (2008) Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Sci Total Environ 401:51–59

    Article  CAS  Google Scholar 

  • Mussi MA, Calcaterra NB (2010) Paraquat-induced oxidative stress response during amphibian early embryonic development. Comp Biochem Physiol Part C 151:240–247

    Google Scholar 

  • Nguyen-Ngoc H, Durrieu C, Tran-Minh C (2009) Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides. Ecotoxicol Environ Saf 72:316–320

    Article  CAS  Google Scholar 

  • Oliveira JB, Goncalves AMM, Goncalves F, Pereira MJ (2007) Growth inhibition of algae exposed to paraquat. Fresenius Environ Bull 16:621–625

    CAS  Google Scholar 

  • Papadimitriou K, Pratsinis H, Nebe-von-Caron G, Kletsas D, Tsakalidou E (2006) Rapid assessment of the physiological status of Streptococcus macedonicus by flow cytometry and fluorescent probes. Int J Food Microbiol 111:197–205

    Article  CAS  Google Scholar 

  • Pena L, Pasquini L, Tomaro ML, Gallego SM (2006) Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci 171:531–537

    Article  CAS  Google Scholar 

  • Perl-Treves R, Perl A (2002) Oxidative stress: an introduction. In: Inzé D, Van Montagu M (eds) Oxidative Stress in Plants. Taylor & Francis, London, pp 1–32

    Google Scholar 

  • Peterson SM, Stauber JL (1996) New algal enzyme bioassay for the rapid assessment of aquatic toxicity. Bull Environ Contam Toxicol 56:750–757

    Article  CAS  Google Scholar 

  • Plásek J, Sigler K (1996) Slow fluorescent indicators of membrane potential: a survey of different approaches to probe response analysis. J Photochem Photobiol B 33:101–124

    Article  Google Scholar 

  • Prado R, García R, Rioboo C, Herrero C, Abalde J, Cid A (2009a) Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat. Environ Int 35:240–247

    Article  CAS  Google Scholar 

  • Prado R, Rioboo C, Herrero C, Cid A (2009b) The herbicide paraquat induces alterations in the elemental and biochemical composition of non-target microalgal species. Chemosphere 76:1440–1444

    Article  CAS  Google Scholar 

  • Prado R, Rioboo C, Herrero C, Cid A (2011) Characteriztion of cell response in Chlamydomonas moewusii cultures exposed to the herbicide paraquat: Induction of chlorosis. Aquat Toxicol 102:10–17

    Article  CAS  Google Scholar 

  • Qian H, Chen W, Sun L, Jin Y, Liu W, Fu Z (2009) Inhibitory effects of paraquat on photosynthesis and response to oxidative stress in Chlorella vulgaris. Ecotoxicology 18:537–543

    Article  CAS  Google Scholar 

  • Qin Y, Lu M, Gong X (2008) Dihydrorhodamine 123 is superior to 2, 7-dichlorodihydrofluorescein diacetate and dihydrorhodamine 6G in detecting intracellular hydrogen peroxide in tumor cells. Cell Biol Int 32:224–228

    Article  CAS  Google Scholar 

  • Rabinovitch PS, June CH (1990) Intracellular ionized calcium, membrane potential, and pH. In: Ormerod MG (ed) Flow cytometry, a practical approach. Oxford University Press, Oxford, pp 161–185

    Google Scholar 

  • Regel RH, Ferris JM, Ganf GG, Broookes JD (2002) Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquat Toxicol 59:209–223

    Article  CAS  Google Scholar 

  • Rioboo C, González O, Herrero C, Cid A (2002) Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides. Aquat Toxicol 59:225–235

    Article  CAS  Google Scholar 

  • Rioboo C, Prado R, Herrero C, Cid A (2007) Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquat Toxicol 83:247–253

    Article  CAS  Google Scholar 

  • Rioboo C, O’Connor JE, Prado R, Herrero C, Cid A (2009) Cell proliferation alterations in Chlorella cells under stress conditions. Aquat Toxicol 94:229–237

    Article  CAS  Google Scholar 

  • Sáenz ME, Alberdi JL, Di Marzio WD, Accorinti J, Tortorelli MC (1997) Paraquat toxicity to different green algae. Bull Environ Contam Toxicol 58:922–928

    Article  Google Scholar 

  • Scott JA, Rabito CA (1988) Oxygen radicals and plasma membrane potential. Free Radical Biol Med 5:237–246

    Article  CAS  Google Scholar 

  • Seguin F, Druart JC, Le Cohu R (2001) Effects of atrazine and nicosulfuron on periphytic diatom communities in freshwater outdoor lentic mesocosms. Ann Limnol 37:3–8

    Article  Google Scholar 

  • Shapiro HM (1995) Practical Flow Cytometry, 3rd edn. Wiley-Liss Inc., New York

    Google Scholar 

  • Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180:65–77

    Article  CAS  Google Scholar 

  • Taylor NL, Day DA, Millar AH (2002) Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem 277:42663–42668

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    Article  CAS  Google Scholar 

  • van Wezel AP, van Vlaardingen P (2004) Environmental risk limits for antifouling substances. Aquat Toxicol 66:427–444

    Article  Google Scholar 

  • Veal DA, Deere D, Ferrari B, Piper J, Attfield PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Inmunol Methods 243:191–210

    Article  CAS  Google Scholar 

  • Walrand S, Valeix S, Rodríguez C, Ligot P, Chassagne J, Vasson M (2003) Flow cytometry study of polymorphonuclear neutrophil oxidative burst: a comparison of three fluorescent probes. Clin Chim Acta 331:103–110

    Article  CAS  Google Scholar 

  • Warren N, Allan IJ, Carter JE, House WA, Parker A (2003) Pesticides and other microorganic contaminants in freshwater sedimentary environments-A review. Appl Geochem 18:159–194

    Article  CAS  Google Scholar 

  • Wolff C, Fuks B, Chatelain P (2003) Comparative study of membrane potential-sensitive fluorescent probes and their use in ion channel screening assays. J Biomol Screen 8:533–543

    Article  CAS  Google Scholar 

  • Wong PK (2000) Effects of 2, 4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere 41:177–182

    Article  CAS  Google Scholar 

  • Yoshida K, Igarashi E, Wakatsuki E, Miyamoto K, Hirata K (2004) Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Sci 167:1335–1341

    Article  CAS  Google Scholar 

  • Yu Y, Kong F, Wang M, Qian L, Shi X (2007) Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Ecotoxicol Environ Saf 66:49–56

    Article  CAS  Google Scholar 

  • Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom k, Vásquez-Vivar J, Kalyanaraman B (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radical Biol Med 34:1359–1368

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research project from the Spanish Government’s Ministerio de Educación e Innovación (CGL2004-02037). R. Prado gratefully acknowledges a F.P.U. fellowship from the Spanish Ministerio de Educación y Ciencia. The authors wish to thank Gerardo Fernández (SAI-UDC) his willingness to carry out the determination of paraquat in water, and also thank the suggestions made by reviewers to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles Cid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prado, R., Rioboo, C., Herrero, C. et al. Flow cytometric analysis to evaluate physiological alterations in herbicide-exposed Chlamydomonas moewusii cells. Ecotoxicology 21, 409–420 (2012). https://doi.org/10.1007/s10646-011-0801-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0801-3

Keywords

Navigation