Skip to main content
Log in

Assessing abalone growth inhibition risk to cadmium and silver by linking toxicokinetics/toxicodynamics and subcellular partitioning

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The purpose of this study was to link toxicokinetics/toxicodynamics and subcellular partitioning for assessing the susceptibility and the growth inhibition risks of abalone Haliotis diversicolor supertexta exposed to waterborne and foodborne cadmium (Cd) and silver (Ag). We reanalyzed published data on growth inhibition and subcellular partitioning associated with the present mechanistic model to explore the correlations among elimination (k e), detoxification (k d), and recovery (k r) rate constants and to assess the growth inhibition risk. We found a positive correlation among k e, k d, and k r in abalone exposed to Ag. We also employed a life-stage based probabilistic assessment model to estimate the growth inhibition risk of abalone to environmentally relevant Cd (5–995 μg l−1) and Ag (0.05–9.95 μg l−1) concentrations in Taiwan. The results showed that abalone had a minimum 20% probability of the growth inhibition risk exposed to Cd, whereas Ag exposure was not likely to pose the risk. The maximum biomasses were estimated to be 0.0039 and 0.0038, 61.61 and 43.87, and 98.88 and 62.97 g for larvae, juveniles, and adults of abalone exposed to the same levels of Cd and Ag, respectively. Our study provides a useful tool to detect potential growth biomass of abalone populations subjected to Cd and Ag stresses and mechanistic implications for a long-term ecotoxicological risk assessment in realistic situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alunno-Bruscia M, van der Veer HW, Kooijman SALM (2009) The AquaDEB project (phase I): analysing the physiological flexibility of aquatic species and connecting physiological diversity to ecological and evolutionary processes by using dynamic energy budgets. J Sea Res 62:43–48

    Article  Google Scholar 

  • Ashauer R, Bozall ABA, Brown CD (2007) New ecotoxicological model to simulate survival of aquatic invertebrates after exposure of fluctuating and sequential pulses of pesticides. Environ Sci Technol 41:1480–1486

    Article  CAS  Google Scholar 

  • Borgmann U, Norwood WP, Dixon DG (2004) Re-evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model. Environ Pollut 131:469–484

    Article  CAS  Google Scholar 

  • Buchwalter DB, Cain DJ, Martin CA, Xie L, Lunma SN, Garland T (2008) Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proc Natl Acad Sci USA 105:8321–8326

    Article  CAS  Google Scholar 

  • Bury NR, Wood CM (1999) Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel. Am J Physiol 277:R1385–R1391

    CAS  Google Scholar 

  • Castilho PC, Martins IA, Bianchini A (2001) Gill Na+, K+-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana, 1851 (Decapoda Grapsidae). J Exp Mar Bio Ecol 256:215–227

    Article  CAS  Google Scholar 

  • Chen HC (1989) Farming the small abalone Haliotis diversicolor supertexta in Taiwan. In: Hahn HO (ed) Handbook of culture of abalone and other marine gastropods. CRC Press, Boca Raton, pp 265–283

    Google Scholar 

  • Cheung MS, Wang WX (2005) Influence of subcellular metal compartmentalization in different prey on the transfer of metal to a predatory gastropod. Mar Ecol Prog Ser 286:155–166

    Article  CAS  Google Scholar 

  • Croteau MN, Luoma SN (2009) Predicting dietborne metal toxicity from metal influxes. Environ Sci Technol 43:4915–4921

    Article  CAS  Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) A biotic ligand model of the acute toxicity of metal I. Technical basis. Environ Toxicol Chem 20:2383–2396

    Article  CAS  Google Scholar 

  • Dubois M, Hare L (2009) Subcellular distribution of cadmium in two aquatic invertebrates: change over time and relationship to Cd assimilation and loss by a predatory insect. Environ Sci Technol 43:356–361

    Article  CAS  Google Scholar 

  • Gordon HR, Cool PA (2001) World abalone supply, markets and pricing: historical, current and future. J Shellfish Res 20:567–570

    Google Scholar 

  • Grosell M, Blanchard J, Brix KV, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol 84:162–172

    Article  CAS  Google Scholar 

  • Hsieh HC (2005) Studies on the nutrition and heavy metals absorption of Gracilaria coronopifolia and Gelidium amansii at different salinity. Unpublished MS dissertation. National Taiwan Ocean University

  • Huang KM (1998) The culture of abalone. Council of Agriculture Executive Yuan, Taipei

    Google Scholar 

  • Huang X, Ke C, Wang WX (2008) Bioaccumulation of silver, cadmium and mercury in the abalone Haliotis diversicolor from water and food sources. Aquaculture 283:194–202

    Article  CAS  Google Scholar 

  • Huang X, Guo F, Ke C, Wang WX (2010) Responses of abalone Haliotis diversicolor to sublethal exposure of waterborne and dietary silver and cadmium. Ecotoxicol Environ Saf 73:1130–1137

    Article  CAS  Google Scholar 

  • Janes N, Playle RC (1995) Modeling silver binding to gills of rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 14:1847–1858

    CAS  Google Scholar 

  • Jarayabhand P, Pahavasit N (1996) A review of the culture of tropical abalone with species reference to Thailand. Aquaculture 140:159–168

    Article  Google Scholar 

  • Cheng JH (2004) The study of trace metals of the aquaculture ponds in Taiwan Area. Unpublished MS dissertation. National Taiwan Ocean University

  • Kammenga JE, Busschers M, Van Straalen NM, Jepson PC, Bakker J (1996) Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Funct Ecol 10:106–111

    Article  Google Scholar 

  • Kooijman SALM, Bedaux JJM (1996) The analysis of aquatic toxicity data. VU University press, Amsterdam

    Google Scholar 

  • Lapointe D, Gentes S, Ponton DE (2009) Influence of prey type on nickel and thallium assimilation, subcellular distribution and effects in juvenile fathead Minnows (Pimephales promelas). Environ Sci Technol 43:8665–8670

    Article  CAS  Google Scholar 

  • Lee JH, Landrum PE, Koh CH (2002) Prediction of time-dependent PAH toxicity in Hyalella azteca using a damage assessment model. Environ Sci Technol 36:3131–3138

    Article  CAS  Google Scholar 

  • Mclusky DS, Bryant V, Cambell R (1986) The effects of temperature and salinity on the toxicity of heavy metals to marine and estuarine invertebrates. Oceanogr Mar Biol 24:481–520

    CAS  Google Scholar 

  • Morgan IJ, Henry RP, Wood CM (1997) The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl transport. Aquat Toxicol 38:145–163

    Article  CAS  Google Scholar 

  • Nadella SR, Fitzpatrick JL, Franklin N, Bucking C, Smith S, Wood CM (2009) Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel (Mytilus trossolus) and the protective effect of dissolved organic carbon. Comp Biochem Physiol C –Toxicol Pharmacol 149:340–348

    Article  Google Scholar 

  • Ng TYT, Wood CM (2008) Trophic transfer and dietary toxicity of Cd from the oligochaete to the rainbow trout. Aquat Toxicol 87:47–59

    Article  CAS  Google Scholar 

  • Ng TYT, Klinck JS, Wood CM (2009) Does dietary Ca protect against toxicity of a low dietborne Cd exposure to rainbow trout? Aquat Toxicol 91:75–86

    Article  CAS  Google Scholar 

  • Nichols JW, Brown S, Wood CM, Walsh P, Playle RC (2006) Influence of salinity and organic matter on silver accumulation in Gulf toadfish (Opsanus beta). Aquat Toxicol 78:253–261

    Article  CAS  Google Scholar 

  • Oakes FR, Ponte RD (1996) The abalone market: opportunities for cultured abalone. Aquaculture 140:187–195

    Article  Google Scholar 

  • Pan K, Wang WX (2008) The subcellular fate of cadmium and zinc in the scallop Chlamys nobilis during waterborne and dietary metal exposure. Aquat Toxicol 90:253–260

    Article  CAS  Google Scholar 

  • Playle RC, Dixon DG, Burnison K (1993) Copper and cadmium binding to fish gill: estimates of metal-gill stability constants and modeling of metal accumulation. Can J Fish Aquat Sci 50:2678–2687

    Article  CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentration in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  Google Scholar 

  • Rainbow PS, Amiard JC, Amiard-Triquet C, Cheung MS, Zhang L, Zhoung H, Wang WX (2007) Trophic transfer of trace metal: subcellular compartmentalization in bivalve prey, assimilation by gastropod predator and in vitro digestion simulations. Mar Ecol Prog Ser 348:125–138

    Article  CAS  Google Scholar 

  • Ramskov T, Forbes VE (2008) Life history and population dynamics of the opportunistic polychaete Capitella sp. I in relation to sediment organic matter. Mar Ecol Prog Ser 369:181–192

    Article  Google Scholar 

  • Seebaugh DR, Wallace WG (2009) Assimilation and subcellular partitioning of elements by grass shrimp collected along an impact gradient. Aquat Toxicol 93:107–115

    Article  CAS  Google Scholar 

  • Slaveykova VI, Wilkinson KJ (2005) Predicting the bioavailability of metals and metal complexes: Critical review of the biotic ligand model. Environ Chem 2:9–24

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic Chemistry, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  • Tsai JW, Liao CM (2006) Mode of action and growth toxicity of arsenic to tilapia Oreochromis mossambicus can be determined bioenergetically. Arch Environ Contam Toxicol 50:144–152

    Article  CAS  Google Scholar 

  • Voets J, Redeker ES, Blust R, Bervoets L (2009) Differences in metal sequestration between zebra mussels from clean and polluted field locations. Aquat Toxicol 93:53–60

    Article  CAS  Google Scholar 

  • Wallace WG, Lopez GR (1996) Relationship between subcellular cadmium distribution in prey and cadmium trophic transfer to a predator. Estuaries Coasts 19:923–930

    Article  CAS  Google Scholar 

  • Wallace WG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM). Mar Ecol Prog Ser 257:125–137

    Article  CAS  Google Scholar 

  • Wang WX, Rainbow PS (2006) Subcellular partitioning and the prediction of cadmium to toxicity to aquatic organisms. Environ Chem 3:395–399

    Article  CAS  Google Scholar 

  • Ward TJ, Kramer JR (2002) Silver speciation during chronic toxicity tests with the mysid, Americanmysis bahia. Comp Biochem Physiol C Toxicol Pharmacol 133:75–86

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631

    Article  CAS  Google Scholar 

  • Wood CM, McDonald MD, Walker P, Grosell M, Barimo JF, Playle RC, Walsh PJ (2004) Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta). Aquat Toxicol 70:137–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Min Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WY., Ju, YR., Chen, BC. et al. Assessing abalone growth inhibition risk to cadmium and silver by linking toxicokinetics/toxicodynamics and subcellular partitioning. Ecotoxicology 20, 912–924 (2011). https://doi.org/10.1007/s10646-011-0659-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0659-4

Keywords

Navigation