Skip to main content
Log in

Investigations of responses to metal pollution in land snail populations (Cantareus aspersus and Cepaea nemoralis) from a smelter-impacted area

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

A cross-transplantation field experiment was performed to investigate about possible adaptation/acclimatization to metal pollution in common garden snail Cantareus aspersus (ex-Helix aspersa) and brown-lipped grove snail Cepaea nemoralis populations. Adults were collected from an area surrounding a former smelter (ME), highly polluted by trace metals (TMs) for decades, and from an unpolluted site (BE). Subadults of first generation (F1) were exposed in microcosms in a 28-day kinetic study. Four exposure sites were chosen around the smelter along a soil pollution gradient (vegetation and soil otherwise comparable). Bioaccumulation in snail soft tissues globally increased with soil contamination, with Cd, Pb and Zn concentrations reaching 271, 187, 5527 μg g−1, respectively. Accumulation kinetic patterns were similar between snail species but C. nemoralis showed greater TM levels than C. aspersus. Some inter-population differences were revealed in TM accumulation (bioaccumulation factors, accumulation kinetics) but did not suggest consistent adaptive responses. We did not detect negative effects of TM exposure on snail condition (body weight, shell size, shell weight). ME C. aspersus snails produced heavier shells than BE snails under exposure to TMs at the highest level, suggesting an adaptive response. The protocol used in this study, however, did not allow unambiguously distinguishing whether this response was due to genetic adaptation or to maternal effects. Abnormal but reversible shell development of adult ME C. nemoralis suggested physiological acclimatization. Differences in responses to TMs between populations are observed for conchological parameters, not for bioaccumulation, with different strategies according to the species (acclimatization or adaptation/maternal effects).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AFNOR (1996) Qualité des sols—Méthodes chimiques—sols sédiments, mise en solution totale par attaque acide—NF X31–147. Association Française de Normalisation, Paris

    Google Scholar 

  • AFNOR (1999) Qualité des sols—Méthodes chimiques—Détermination de la capacité d’échange cationique (CEC) et des cations extractibles—NF X31–130. Association Française de Normalisation, Paris

    Google Scholar 

  • AFNOR (2003) Qualité des sols—determination de la distribution granulométrique des particules du sol - Méthode à la pipette—NF X31–107. Association Française de Normalisation, Paris

    Google Scholar 

  • Arnaud JF, Madec L, Guiller A, Bellido A (2001) Spatial analysis of allozyme and microsatellite DNA polymorphisms in the land snail Helix aspersa (Gastropoda : Helicidae). Mol Ecol 10:1563–1576. doi:10.1046/j.1365-294X.2001.01292.x

    Article  CAS  Google Scholar 

  • Baur A, Baur B (1993) Daily movement patterns and dispersal in the land snail Arianta arbustorum. Malacologia 35:89–98

    Google Scholar 

  • Beeby A (1993) The interaction of Pb and Ca assimilation in Helix aspersa with wounded shells. Pol J Environ Stud 2:9–13

    CAS  Google Scholar 

  • Beeby A (2001) What do sentinels stand for? Environ Pollut 112:285–298. doi:10.1016/S0269-7491(00)00038-5

    Article  CAS  Google Scholar 

  • Beeby A, Richmond L (1988) Calcium metabolism in two populations of the snail Helix aspersa on a high-lead diet. Arch Environ Contam Toxicol 17:507–511. doi:10.1007/BF01055516

    Article  CAS  Google Scholar 

  • Beeby A, Richmond L (1998) Variation in the mineral composition of eggs of the snail, Helix aspersa between populations exposed to different levels of metal contamination. Environ Pollut 101:25–31. doi:10.1016/S0269-7491(98)00040-2

    Article  CAS  Google Scholar 

  • Beeby A, Richmond L (2001a) Intraspecific competition in populations of Helix aspersa with different histories of exposure to lead. Environ Pollut 114:337–344. doi:10.1016/S0269-7491(00)00241-4

    Article  CAS  Google Scholar 

  • Beeby A, Richmond L (2001b) Calcium provision to eggs in two populations of Helix aspersa by parents fed a diet high in lead. J Mollusc Stud 67:1–6. doi:10.1093/mollus/67.1.1

    Article  Google Scholar 

  • Beeby A, Richmond L (2002) Evaluating Helix aspersa as a sentinel for mapping metal pollution. Ecol Indicators 1:261–270. doi:10.1016/S1470-160X(02)00022-5

    Article  CAS  Google Scholar 

  • Beeby A, Richmond L (2003) Do the soft tissues of Helix aspersa serve as a quantitative sentinel of predicted free lead concentrations in soils? Appl Soil Ecol 22:159–165. doi:10.1016/S0929-1393(02)00130-0

    Article  Google Scholar 

  • Beeby A, Richmond L (2010) Magnesium and the regulation of lead in three populations of the garden snail Cantareus aspersus. Environ Pollut (in press) Corrected proof doi:10.1016/j.envpol.2010.02.002

  • Beeby A, Richmond L, Herpe F (2002) Lead reduces shell mass in juvenile garden snails (Helix aspersa). Environ Pollut 120:283–288. doi:10.1016/S0269-7491(02)00151-3

    Article  CAS  Google Scholar 

  • Belfiore NM, Anderson SL (1998) Genetic patterns as a tool for monitoring and assessment of environmental impacts: The example of genetic ecotoxicology. Environ Monit Assess 51:465–479. doi:10.1023/A:1005971132502

    Article  Google Scholar 

  • Berger B, Dallinger R (1993) Terrestrial snails as quantitative indicators of environmental metal pollution. Environ Monit Assess 25:65–84. doi:10.1007/BF00549793

    Article  CAS  Google Scholar 

  • Bonneris E, Giguere A, Perceval O, Buronfosse T, Masson S, Hare L, Campbell PGC (2005) Sub-cellular partitioning of metals (Cd, Cu, Zn) in the gills of a freshwater bivalve, Pyganodon grandis: role of calcium concretions in metal sequestration. Aquat Toxicol 71:319–334. doi:10.1016/j.aquatox.2004.11.025

    Article  CAS  Google Scholar 

  • Brown BE (1982) The form and function of metal-containing granules in invertebrate tissues. Biol Rev Camb Philos Soc 57:621–667. doi:10.1111/j.1469-185X.1982.tb00375.x

    Article  CAS  Google Scholar 

  • Cameron RAD, Williamson P (1977) Estimating migration and effects of disturbance in mark-recapture studies on snail Cepaea nemoralis L. J Anim Ecol 46:173–179

    Article  Google Scholar 

  • Chevalier L, Desbuquois C, Le Lannic J, Charrier M (2001) Poaceae in the natural diet of the snail Helix aspersa Müller (Gasteropoda, Pulmonata). Compte Rendu de l’Académie des Sciences. Paris 324:979–987

    CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719. doi:10.1016/j.biochi.2006.07.003

    Article  CAS  Google Scholar 

  • Coeurdassier M, Gomot-de Vaufleury A, Lovy C, Badot P-M (2002) Is the cadmium uptake from soil important in bioaccumulation and toxic effects for snails. Ecotoxicol Environ Saf 53:425–431. doi:10.1016/S0147-6513(02)00004-0

    Article  CAS  Google Scholar 

  • Crawley MJ (2007) The R book. John Wiley & Sons, Ltd, Chichester

    Book  Google Scholar 

  • Dallinger R, Rainbow PS (1993) Ecotoxicology of metals in invertebrates. Lewis Publishers, Boca raton

    Google Scholar 

  • Dallinger R, Lagg B, Egg M, Schipflinger R, Chabicovsky M (2004) Cd accumulation and Cd-metallothionein as a biomarker in Cepaea hortensis (Helicidae, Pulmonata) from laboratory exposure and metal-polluted habitats. Ecotoxicology 13:757–772. doi:10.1007/s10646-003-4474-4

    Article  CAS  Google Scholar 

  • de Vaufleury A, Coeurdassier M, Pandard P, Scheifler R, Lovy C, Crini N, Badot P-M (2006) How terrestrial snails can be used in risk assessment of soils. Environ Toxicol Chem 25:797–806. doi:10.1897/04-560R.1

    Article  Google Scholar 

  • Douay F, Pruvot C, Roussel H, Ciesielski H, Fourrier H, Proix N, Waterlot C (2008) Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water Air Soil Pollut 188:247–260. doi:10.1007/s11270-007-9541-7

    Article  CAS  Google Scholar 

  • Douay F, Pruvot C, Waterlot C, Fritsch C, Fourrier H, Loriette A, Bidar G, Grand C, de Vaufleury A, Scheifler R (2009) Contamination of woody habitat soils around a former lead smelter in the North of France. Sci Total Environ 407:5564–5577. doi:10.1016/j.scitotenv.2009.06.015

    Article  CAS  Google Scholar 

  • Fairbrother A, Wenstel R, Sappington K, Wood W (2007) Framework for metals risk assessment. Ecotoxicol Environ Saf 68:145–227. doi:10.1016/j.ecoenv.2007.03.015

    Article  CAS  Google Scholar 

  • Fritsch C, Scheifler R, Beaugelin-Seiller K, Hubert P, Coeurdassier M, de Vaufleury A, Badot P-M (2008) Biotic interactions modify the transfer of cesium-137 in a soil-earthworm-plant-snail food web. Environ Toxicol Chem 27:1698–1707. doi:10.1897/07-416.1

    Article  CAS  Google Scholar 

  • Fritsch C, Cosson RP, Coeurdassier M, Raoul F, Giraudoux P, Crini N, de Vaufleury A, Scheifler R (2010a) Responses of wild small mammals to a pollution gradient: host factors influence metal and metallothionein levels. Environ Pollut 158:827–840. doi:10.1016/j.envpol.2009.09.027

    Article  CAS  Google Scholar 

  • Fritsch C, Giraudoux P, Coeurdassier M, Douay F, Raoul F, Pruvot C, Waterlot C, Vaufleury Ad, Scheifler R (2010b) Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife. Chemosphere 81:141–155. doi:10.1016/j.chemosphere.2010.06.075

    Article  CAS  Google Scholar 

  • Gimbert F (2006) Cinétiques de transfert de polluants métalliques du sol à l’escargots. Dissertation, University of Franche-Comté

  • Gimbert F, de Vaufleury A, Douay F, Scheifler R, Coeurdassier M, Badot P-M (2006) Modelling chronic exposure to contaminated soil: a toxicokinetic approach with the terrestrial snail Helix aspersa. Environ Int 32:866–875. doi:10.1016/j.envint.2006.05.006

    Article  CAS  Google Scholar 

  • Gimbert F, de Vaufleury A, Douay F, Coeurdassier M, Scheifler R, Badot P-M (2008a) Long-term responses of snails exposed to cadmium-contaminated soils in a partial life-cycle experiment. Ecotoxicol Environ Saf 70:138–146. doi:10.1016/j.ecoenv.2007.05.014

    Article  CAS  Google Scholar 

  • Gimbert F, Mench M, Coeurdassier M, Badot P-M, de Vaufleury A (2008b) Kinetic and dynamic aspects of soil-plant-snail transfer of cadmium in the field. Environ Pollut 152:736–745. doi:10.1016/j.envpol.2007.06.044

    Article  CAS  Google Scholar 

  • Gimbert F, Vijver MG, Coeurdassier M, Scheifler R, Peijnenburg WJGM, Badot PM, de Vaufleury A (2008c) How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. Environ Toxicol Chem 27:1284–1292. doi:10.1897/07-503.1

    Article  CAS  Google Scholar 

  • Gomot A (1997) Dose-dependent effects of cadmium on the growth of snails in toxicity bioassays. Arch Environ Contam Toxicol 33:209–216. doi:10.1007/s002449900245

    Article  CAS  Google Scholar 

  • Gomot A, Pihan F (1997) Comparison of the bioaccumulation capacities of copper and zinc in two snail subspecies (Helix). Ecotoxicol Environ Saf 38:85–94. doi:10.1006/eesa.1997.1566

    Article  CAS  Google Scholar 

  • Gomot A, Gomot L, Boukraa S, Bruckert S (1989) Influence of soil on the growth of the land snail Helix aspersa. An experimental study of the absorption route for the stimulating factors. J Mollusc Stud 55:1–7. doi:10.1093/mollus/55.1.1-a

    Article  Google Scholar 

  • Gomot-de Vaufleury A (2000) Standardized growth toxicity testing (Cu, Zn, Pb, and Pentachlorophenol) with Helix aspersa. Ecotoxicol Environ Saf 46:41–50. doi:10.1006/eesa.1999.1872

    Article  CAS  Google Scholar 

  • Gomot-de Vaufleury A, Bispo A (2000) Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails. 1. Sublethal effects on growth. Environ Sci Technol 34:1865–1870. doi:10.1021/es9907212

    Article  CAS  Google Scholar 

  • Gomot-de Vaufleury A, Pihan F (2000) Growing snails used as sentinels to evaluate terrestrial environment contamination by trace elements. Chemosphere 40:275–284. doi:10.1016/S0045-6535(99)00246-5

    Article  CAS  Google Scholar 

  • Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428. doi:10.2134/jeq2006.0492

    Article  CAS  Google Scholar 

  • Hendrickx F, Maelfait J-P, Bogaert N, Tojal C, Du Laing G, Tack FMG, Verloo MG (2004) The importance of biological factors affecting trace metal concentration as revealed from accumulation patterns in co-occurring terrestrial invertebrates. Environ Pollut 127:335–341. doi:10.1016/j.envpol.2003.09.001

    Article  CAS  Google Scholar 

  • Hispard F, Schuler D, de Vaufleury A, Scheifler R, Badot PM, Dallinger R (2008) Metal distribution and metallothionein induction after cadmium exposure in the terrestrial snail Helix aspersa (gastropoda, pulmonata). Environ Toxicol Chem 27:1533–1542. doi:10.1897/07-232.1

    Article  CAS  Google Scholar 

  • Hobbelen PHF, Koolhaas JE, van Gestel CAM (2006) Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Environ Pollut 144:639–646. doi:10.1016/j.envpol.2006.01.019

    Article  CAS  Google Scholar 

  • ISO (1994) Soil quality—Determination of pH—ISO 10390:1994. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (1995a) Soil quality—Determination of carbonate content. Volumetric method—ISO 10693:1995. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (1995b) Soil quality—Determination of organic and total carbon after dry combustion (elementary analysis)—ISO 10694:1995. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (2006) Soil quality—Effects of pollutants on juvenile land snails (Helicidae). Determination of the effects on growth by soil contamination—ISO 15952:2006. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (2008) Soil quality—requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. ISO 17402:2008. International Organization for Standardization, Geneva

    Google Scholar 

  • Jordaens K, De Wolf H, Van Houtte N, Vandecasteele B, Backeljau T (2006a) Genetic variation in two land snails, Cepaea nemoralis and Succinea putris (Gastropoda, Pulmonata), from sites differing in heavy metal content. Genetica 128:227–239. doi:10.1007/s10709-005-5705-9

    Article  Google Scholar 

  • Jordaens K, De Wolf H, Vandecasteele B, Blust R, Backeljau T (2006b) Associations between shell strength, shell morphology and heavy metals in the land snail Cepaea nemoralis (Gastropoda, Helicidae). Sci Total Environ 363:285–293. doi:10.1016/j.scitotenv.2005.12.002

    Article  CAS  Google Scholar 

  • Kammenga J, Laskowski R (2000) Demography in ecotoxicology. Ecological an environmental toxicology Series. John Wiley & Sons, Chichester

    Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

    Article  Google Scholar 

  • Kleewein D (1999) Population size, density, spatial distribution and dispersal in an Austrian population of the land snail Arianta arbustorum styriaca (Gastropoda: Helicidae). J Mollusc Stud 65:303–315. doi:10.1093/mollus/65.3.303

    Article  Google Scholar 

  • Lagisz M, Laskowski R (2008) Evidence for between-generation effects in carabids exposed to heavy metals pollution. Ecotoxicology 17:59–66. doi:10.1007/s10646-007-0176-7

    Article  CAS  Google Scholar 

  • Laskowski R, Hopkin SP (1996) Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa). Ecotoxicol Environ Saf 34:59–69. doi:10.1006/eesa.1996.0045

    Article  CAS  Google Scholar 

  • Lindstrom M, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687

    Article  CAS  Google Scholar 

  • Meers E, Samson R, Tack FMG, Ruttens A, Vandegehuchte M, Vangronsveld J, Verloo MG (2007) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ Exp Bot 60:385–396. doi:10.1016/j.envexpbot.2006.12.010

    Article  CAS  Google Scholar 

  • Menta C, Parisi V (2001) Metal concentrations in Helix pomatia, Helix aspersa and Arion rufus: a comparative study. Environ Pollut 115:205–208. doi:10.1016/S0269-7491(01)00110-5

    Article  CAS  Google Scholar 

  • Monteiro MS, Santos C, Soares A, Mann RM (2008) Does subcellular distribution in plants dictate the trophic bioavailability of cadmium to Porcellio dilatatus (Crustacea, Isopoda)? Environ Toxicol Chem 27:2548–2556. doi:10.1897/08-154.1

    Article  CAS  Google Scholar 

  • Morgan AJ, Kille P, Stürzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41:1085–1096. doi:10.1021/es061992x

    Article  CAS  Google Scholar 

  • Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407. doi:10.1016/S0169-5347(98)01472-4

    Article  CAS  Google Scholar 

  • Mulvey M, Newman MC, Beeby AN (1996) Genetic and conchological comparison of snails (Helix aspersa) differing in shell deposition of lead. J Mollusc Stud 62:213–223. doi:10.1093/mollus/62.2.213

    Article  Google Scholar 

  • Nahmani J, Hodson ME, Devin S, Vijver MG (2009) Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils. Environ Pollut 157:2622–2628. doi:10.1016/j.envpol.2009.05.002

    Article  CAS  Google Scholar 

  • Notten MJM, Oosthoek AJP, Rozema J, Aerts R (2005) Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environ Pollut 138:178–190. doi:10.1016/j.envpol.2005.01.011

    Article  CAS  Google Scholar 

  • Notten MJM, Oosthoek AJP, Rozema J, Aerts R (2006) Heavy metal pollution affects consumption and reproduction of the landsnail Cepaea nemoralis fed on naturally polluted Urtica dioica leaves. Ecotoxicology 15:295–304. doi:10.1007/s10646-006-0059-3

    Article  CAS  Google Scholar 

  • Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicol Environ Saf 56:63–77. doi:10.1016/S0147-6513(03)00051-4

    Article  CAS  Google Scholar 

  • Pfenninger M (2002) Relationship between microspatial population genetic structure and habitat heterogeneity in Pomatias elegans (OF Muller 1774) (Caenogastropoda, Pomatiasidae). Biol J Linn Soc 76:565–575. doi:10.1046/j.1095-8312.2002.00080.x

    Article  Google Scholar 

  • Pihan F, de Vaufleury A (2000) The snail as a target organism for the evaluation of industrial waste dump contamination and the efficiency of its remediation. Ecotoxicol Environ Saf 46:137–147. doi:10.1006/eesa.1999.1891

    Article  CAS  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer-Verlag, New York

    Book  Google Scholar 

  • Posthuma L, van Straalen NM (1993) Heavy metal adaptation in terrestrial invertebrates—A review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Physiol C 106:11–38. doi:10.1016/0742-8413(93)90251-F

    Google Scholar 

  • Quensen JF, Woodruff DS (1997) Associations between shell morphology and land crab predation in the land snail Cerion. Funct Ecol 11:464–471. doi:10.1046/j.1365-2435.1997.00115.x

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Regoli F, Gorbi S, Fattorini D, Tedesco S, Notti A, Machella N, Bocchetti R, Benedetti M, Piva F (2006) Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environ Health Perspect 114:63–69. doi:10.1289/ehp.8397

    Article  CAS  Google Scholar 

  • Ritz C, Streibig JC (2008) Nonlinear regression with R. Springer-Verlag, New York

    Google Scholar 

  • Roelofs D, Janssens TKS, Timmermans MJTN, Nota B, Marien J, Bochdanovits Z, Ylstra B, Van Straalen NM (2009) Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta. Mol Ecol 18:3227–3239. doi:10.1111/j.1365-294X.2009.04261.x

    Article  CAS  Google Scholar 

  • Rozen A (2006) Effect of cadmium on life-history parameters in Dendrobaena octaedra (Lumbricidae: Oligochaeta) populations originating from forests differently polluted with heavy metals. Soil Biol Biochem 38:489–503. doi:10.1016/j.soilbio.2005.06.003

    Article  CAS  Google Scholar 

  • Russell LK, de Haven JJ, Botts RP (1981) Toxic effects of cadmium on the garden snail (Helix aspersa). Bull Environ Contam Toxicol 26:634–640

    Article  CAS  Google Scholar 

  • Scheifler R, Ben Brahim M, Gomot-de Vaufleury A, Carnus J-M, Badot P-M (2003) A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails. Environ Pollut 122:343–350. doi:10.1016/S0269-7491(02)00333-0

    Article  CAS  Google Scholar 

  • Scheifler R, de Vaufleury A, Coeurdassier M, Crini N, Badot PM (2006) Transfer of Cd, Cu, Ni, Pb, and Zn in a soil-plant-invertebrate food chain: A microcosm study. Environ Toxicol Chem 25:815–822. doi:10.1897/04-675R.1

    Article  CAS  Google Scholar 

  • Schilthuizen M, Van Til A, Salverda M, Liew TS, James S, Bin Elahan B, Vermeulen JJ (2006) Microgeographic evolution of snail shell shape and predator behavior. Evolution 60:1851–1858. doi:10.1554/06-114.1

    Google Scholar 

  • Schweiger O, Frenzel M, Durka W (2004) Spatial genetic structure in a metapopulation of the land snail Cepaea nemoralis (Gastropoda : Helicidae). Mol Ecol 13:3645–3655. doi:10.1111/j.1365-294X.2004.02357.x

    Article  CAS  Google Scholar 

  • Sidoumou Z, GnassiaBarelli M, Romeo M (1997) Cadmium and calcium uptake in the mollusc Donax rugosus and effect of a calcium channel blocker. Bull Environ Contam Toxicol 58:318–325. doi:10.1007/s001289900337

    Article  CAS  Google Scholar 

  • Smith R, Pollard SJT, Weeks JM, Nathanail CP (2006) Assessing harm to terrestrial ecosystems from contaminated land. Soil Use Manage 21:527–540. doi:10.1079/SUM2005345

    Article  Google Scholar 

  • Spurgeon DJ, Hopkin SP (2000) The development of genetically inherited resistance to zinc in laboratory-selected generations of the earthworm Eisenia fetida. Environ Pollut 109:193–201. doi:10.1016/S0269-7491(99)00267-5

    Article  CAS  Google Scholar 

  • Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002) Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut 135:173–194. doi:10.1023/A:1014758811194

    Article  CAS  Google Scholar 

  • Van Gestel CAM (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406:385–395. doi:10.1016/j.scitotenv.2008.05.050

    Article  Google Scholar 

  • Veltman K, Huijbregts MAJ, Hendriks AJ (2008) Cadmium bioaccumulation factors for terrestrial species: Application of the mechanistic bioaccumulation model OMEGA to explain field data. Sci Total Environ 406:413–418. doi:10.1016/j.scitotenv.2008.05.049

    Article  CAS  Google Scholar 

  • Viard W, Pihan F, Promeyrat S, Pihan JC (2004) Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 55:1349–1359. doi:10.1016/j.chemosphere.2004.01.003

    Article  CAS  Google Scholar 

  • Vijver MG, Van Gestel CAM, Lanno RP, Van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol 38:4705–4712. doi:10.1021/es040354g

    Article  CAS  Google Scholar 

  • Williamson P (1980) Variables affecting body burdens of lead, zinc and cadmium in a roadside population of the snail Cepaea hortensis Müller. Oecologia 44:213–220. doi:10.1007/BF00572682

    Article  Google Scholar 

  • Williamson P, Cameron RAD (1976) Natural diet of landsnail Cepaea nemoralis. Oikos 27:493–500

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models—an introduction with R. Chapman et Hall/CRC Press - Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We gratefully thank Cécile Grand from the Agence De l’Environnement et de la Maîtrise de l’Energie (ADEME) for many fruitful scientific discussions. We also warmly thank Elie Dhivert, Willy Gerbaud, Jean-Claude Lambert, Dominique Rieffel and Nicolas Tête for their technical assistance, and Peter Winterton for the review of the English language. The STARTT programme was financially supported by the Agence Nationale de la Recherche (ANR, contract n°ANR-05-ECCO-004) and the ADEME (contract n°0572C0058). Clémentine Fritsch was financially supported by a grant from the ADEME and the Conseil Régional de Franche-Comté. The authors are indebted to two anonymous Reviewers for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette de Vaufleury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 124 kb)

Supplementary material 2 (TIFF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritsch, C., Coeurdassier, M., Gimbert, F. et al. Investigations of responses to metal pollution in land snail populations (Cantareus aspersus and Cepaea nemoralis) from a smelter-impacted area. Ecotoxicology 20, 739–759 (2011). https://doi.org/10.1007/s10646-011-0619-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0619-z

Keywords

Navigation