Skip to main content
Log in

Subchronic effects of cyanobacterial cells on the transcription of antioxidant enzyme genes in tilapia (Oreochromis niloticus)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The increasing occurrence of toxic cyanobacterial blooms in eutrophic water bodies is nowadays of worldwide concern due to their ability to produce toxins such as microcystins (MCs). These cyanobacterial toxins have been shown to affect aquatic organisms such as fish, resulting in oxidative stress. Among the antioxidant enzymes, glutathione peroxidase (GPx) and soluble glutathione-S-transferases (sGST) play an important role in the detoxification of MCs. In the present work tilapia (Oreochromis niloticus) were orally exposed to cyanobacterial cells containing MCs and non-containing MCs for 21 days. The activity and relative mRNA expression by real-time PCR of both enzymes and the GST protein abundance by Western blot analysis were evaluated in liver and kidney. Also the induction of lipid peroxidation (LPO) was assayed. MCs containing cyanobacterial cells induced an increase of LPO products in both organs, and MCs containing and MCs non-containing cyanobacterial cells altered the activity, gene expression and protein abundance of the enzymes, indicating the importance of GPx and sGST in MCs detoxification. Moreover, liver, the main organ involved in biodegradation and biotransformation, experienced an adaptative response to the toxic insult. These results show for the first time that the subchronic exposure to cyanobacterial cells causes changes in antioxidant and detoxification enzymes and that GPx and GST gene expression are good markers of these alterations in tilapia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almar M, Otero L, Santos C, Gallegho JG (1998) Liver glutathione content and glutathione-dependent enzymes of two species of freshwater fishes as bioindicators of chemical pollution. J Environ Sci Health 33:769–783

    Article  CAS  Google Scholar 

  • Atencio L, Moreno I, Jos A, Pichardo S, Moyano R, Blanco A, Cameán AM (2008) Dose-dependent antioxidant responses and pathological changes in tenca (Tinca tinca) after acute oral exposure to Microcystis under laboratory conditions. Toxicon 52:1–12

    Article  CAS  Google Scholar 

  • Barfull A, Garriga C, Mitjans M, Planas JM (2002) Ontogenetic expression and regulation of Na+-d-glucose cotransporter in jejunum of domestic chicken. Am J Physiol Gastrointest Liver Physiol 282:559–564

    Google Scholar 

  • Bowen SH (1982) Feeding, digestion, and growth-qualitative considerations. In: Pullin RSV, Lowe-McConell RH (eds) The biology and culture of tilapias. ICLARM Conference Proceedings 7, International Center for Living Aquatic Resources Management. Manila, Philippines

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Campos A, Vasconcelos V (2010) Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11:268–287

    Article  CAS  Google Scholar 

  • Cazenave J, Bistoni MA, Pesce SF, Wunderlin DA (2006) Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquat Toxicol 76:1–12

    Article  CAS  Google Scholar 

  • Clark SP, Davis MA, Ryan TP, Searfoss GH, Hooser SB (2007) Hepatic gene expression changes in mice associated with prolonged sublethal microcystin exposure. Toxicol Pathol 35:594–605

    Article  CAS  Google Scholar 

  • Ding WX, Shen HM, Zhu HG, Ong CN (1998) Studies on oxidative damage induced by cyanobacteria extract in primary cultured rat hepatocytes. Environ Res Sect A 78:12–18

    Article  CAS  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonetal. Methods Enzymol 186:407–421

    Article  CAS  Google Scholar 

  • Falconer IR (2007) Cyanobacterial toxins present in Microcystis aeruginosa extracts—more than microcystin! Toxicon 50:585–588

    Article  CAS  Google Scholar 

  • Fastner J, Codd GA, Metcalf JS, Woitke P, Wiedner C, Utkilen H (2002) An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material. Anal Bioanal Chem 374:437–444

    Article  CAS  Google Scholar 

  • Fu J, Xie P (2006) The acute effects of microcystin LR on the transcription of nine glutathione S-transferase genes in common carp Cyprinus carpio L. Aquat Toxicol 80:261–266

    Article  CAS  Google Scholar 

  • Gadagbui BKM, James MO (2000) The influence of diet on the regional distribution of glutathione S-transferase activity in channel catfish intestine. J Biochem Mol Toxicol 14:148–154

    Article  CAS  Google Scholar 

  • Gehringer MM (2004) Microcystin-LR and okaidaic acid cellular effects: a dualistic response. FEBS Lett 557:1–8

    Article  CAS  Google Scholar 

  • Gehringer MM, Downs KS, Downing TG, Naude RJ, Shephard EG (2003) An investigation into the effect of selenium supplementation on microcystin hepatotoxicity. Toxicon 41:451–458

    Article  CAS  Google Scholar 

  • Gouze ME, Laffite J, Rouimi P, Loiseau N, Oswald IP, Galtier P (2006) Effect of various doses of deoxynivalenol on liver xenobiotic metabolizing enzymes in mice. Food Chem Toxicol 44:476–483

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Halliwell B, Gutterdige JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hao L, Xie P, Fu J, Li G, Xiong Q, Li H (2008) The effect of cyanobacterial crude extract on the transcription of GST mu, GST kappa and GST rho in different organs of goldfish (Carassius auratus). Aquat Toxicol 90:1–7

    Article  CAS  Google Scholar 

  • He JY, He ZR, Li D, Guo QL (1997) The toxicity of Microcystin aeruginosa to fishes and daphnia. J Lake Sci 9:49–56

    Google Scholar 

  • Jayaraj R, Anand T, Lakshmana Rao PV (2006) Activity and gene expression profile of certain antioxidant enzymes to microcystin-LR induced oxidative stress in mice. Toxicology 220:136–146

    Article  CAS  Google Scholar 

  • Jos A, Pichardo S, Prieto AI, Repetto G, Vázquez CM, Moreno I, Cameán AM (2005) Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions. Aquat Toxicol 72:261–271

    Article  CAS  Google Scholar 

  • Klaassen CD (2001) Casarett & Doull’s toxicology. The basis science of poisons. McGraw-Hill, New York

    Google Scholar 

  • Krajka-Kuzniak V, Kaczmarek J, Baer-Dubowska W (2008) Effect of naturally occurring phenolic acids on the expression of glutathione S-transferase isozymes in the rat. Food Chem Toxicol 46:1097–1102

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lawrence A, Burk RF (1976) Glutathione peroxidase activity in selenium deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  CAS  Google Scholar 

  • Li X, Liu Y, Song L, Liu J (2003) Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon 42:85–89

    Article  CAS  Google Scholar 

  • Li X, Chung I, Kim J, Lee J (2005) Oral exposure to Microcystis increases activity-augmented antioxidant enzymes in the liver of loach (Misgurnus mizolepis) and has no effect on lipid peroxidation. Comp Biochem Physiol Part C 141:292–296

    Article  Google Scholar 

  • Li L, Xie P, Li S, Qiu T, Guo L (2007) Sequential ultrastructural and biochemical changes induced in vivo by the hepatotoxic microcystins in liver of the phytoplanktivorous silver carp Hypophthalmichthys molitris. Comp Biochem Physiol C 146:357–367

    Article  Google Scholar 

  • Li G, Xie P, Fu J, Hao L, Xiong Q, Li H (2008) Microcystin-induced variations in transcription of GSTs in an omnivorous freshwater fish, goldfish. Aquat Toxicol 88:75–80

    Article  CAS  Google Scholar 

  • Liu Y, Xie P, Qiu T, Li HY, Li GY, Hao L, Xiong G (2010) Microcystin extracts induce ultrastructural damage and biochemical disturbance in male rabbit testis. Environ Toxicol 25:9–17

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mate A, Barfull A, Hermosa AM, Gomez-Amores L, Vazquez CM, Planas JM (2006) Regulation of sodium-glucose cotransporter SGLT1 in the intestine of hypertensive rats. Am J Physiol Regul Integr Comp Physiol 291:760–767

    Google Scholar 

  • Meriluoto JA, Spoof LE (2008) Cyanotoxins: sampling, sample processing and toxin uptake. Adv Exp Med Biol 619:483–499

    Article  CAS  Google Scholar 

  • Mohamed ZA, Carmichael WW, Hussein AA (2003) Estimation of microcystins in the freshwater fish Oreochromis niluticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18:137–141

    Article  CAS  Google Scholar 

  • Molina R, Moreno I, Pichardo S, Jos A, Moyano R, Monterde JG, Cameán AM (2005) Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions. Toxicon 46:725–735

    Article  CAS  Google Scholar 

  • Moreno I, Pereira P, Franca S, Cameán A (2004) Toxic cyanobacteria strains isolated from blooms in the Guadiana river (Southwest of Spain). Biol Res 37:405–417

    Article  CAS  Google Scholar 

  • Moreno I, Pichardo S, Jos A, Gómez-Amores L, Mate A, Vazquez CM, Cameán AM (2005a) Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon 45:395–402

    Article  CAS  Google Scholar 

  • Moreno I, Molina R, Jos A, Picó Y, Cameán AM (2005b) Determination of microcystins in fish by solvent extraction and liquid chromatography. J Chromatogr A 1080:199–203

    Article  CAS  Google Scholar 

  • Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  Google Scholar 

  • Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA, Steinberg C (1998) Identification of an enzymatically-formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxification. Biochem Biophys Acta 1425:527–533

    CAS  Google Scholar 

  • Prieto AI, Jos A, Pichardo S, Moreno I, Cameán AM (2006) Differential oxidative stress responses to microcystins LR and RR in intraperitoneally exposed tilapia fish (Oreochromis sp.). Aquat Toxicol 77:314–321

    Article  CAS  Google Scholar 

  • Prieto AI, Pichardo S, Jos A, Moreno IM, Camean AM (2007) Time-dependent oxidative stress responses after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish (Oreochromis niloticus) under laboratory conditions. Aquat Toxicol 84:337–345

    Article  CAS  Google Scholar 

  • Puerto M, Prieto AI, Pichardo S, Moreno I, Jos A, Moyano R, Cameán AM (2009) Effects of dietary N-acetylcysteine on the oxidative stress induced in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom. Environ Toxicol Chem 28:1679–1686

    Article  CAS  Google Scholar 

  • Puerto M, Prieto AI, Jos A, Moreno I, Moyano R, Blanco A, Cameán AM (2010) Dietary N-acetylcysteine (NAC) prevents histopathological changes in tilapias (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom. Aquaculture 306:35–48

    Article  CAS  Google Scholar 

  • Qiu T, Xie P, Ke Z, Li L, Guo L (2007) In situ studies on physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms in a large Chinese lake. Toxicon 50:365–376

    Article  CAS  Google Scholar 

  • Robillot C, Vinh J, Puiseux-Dao S, Hennion MC (2000) Hepatotoxin production kinetics of the cyanobacterium Microcystis aeruginosa PCC 7820, as determined by HPLC: mass spectrometry and protein phosphatase bioassay. Environ Sci Technol 34:3372–3378

    Article  CAS  Google Scholar 

  • Runnegar M, Berdt N, Kong SM, Lee EYC, Zhang L (1995) In vivo and in vitro binding of microcystin to protein phosphatases 1 and 2A. Biochem Biophys Res Commun 216:162–169

    Article  CAS  Google Scholar 

  • Srivastava SK, Hu X, Xia H, Bleicher RJ, Zaren HA, Orchard JL, Awasthi S, Singh SV (1998) ATP-dependent transport of glutathione conjugate of 7β,8α-dihydroxy-9α,10α-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene in murine hepatic canalicular plasma membrane vesicles. Biochem J 332:799–805

    CAS  Google Scholar 

  • Srivastava SK, Hu X, Xia H, Awasthi S, Amin S, Singh SV (1999) Metabolic fate of glutathione conjugate of benzo[a]pyrene-(7R,8S)-diol (9S,10R)-epoxide in human liver. Arch Biochem Biophys 371:340–344

    Article  CAS  Google Scholar 

  • Sun Y, Tang R, Li D, Zhang X, Fu J, Xie P (2008) Acute effects of microcystins on the transcription of antioxidant enzyme genes in crucian carp Carassius auratus. Environ Toxicol 23:145–152

    Article  CAS  Google Scholar 

  • Toivola DM, Eriksson JE (1999) Toxins affecting cell signaling and alteration of cytoskeletal structure. Toxicol In Vitro 13:521–530

    Article  CAS  Google Scholar 

  • Wang L, Liang XF, Liao WQ, Lei LM, Han BP (2006) Structural and functional characterization of microcystin detoxification-related liver genes in a phytoplanktivorous fish, Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol Part C 144:216–227

    Google Scholar 

  • Wiegand C, Pflugmacher S, Oberemm A, Meems N, Beattie KA, Steinberg CEW, Codd GA (1999) Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environ Toxicol 14:89–95

    Article  CAS  Google Scholar 

  • Wiegand C, Pflugmacher S, Oberemm A, Steinberg C (2000) Activity development of selected detoxification enzymes during the ontogenesis of the zebrafish (Danio rerio). Int Rev Hydrobiol 85:413–422

    Article  CAS  Google Scholar 

  • Xie L, Xie P, Ozawa K, Honma T, Yokoyama A, Park HD (2004) Dynamics of microcystins-LR and -RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment. Environ Pollut 127:431–439

    Article  CAS  Google Scholar 

  • Xie L, Xie P, Guo L, Li L, Miyabara Y, Park HD (2005) Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environ Toxicol 20:293–300

    Article  CAS  Google Scholar 

  • Zhao Y, Xie P, Zhang X (2009) Oxidative stress response after prolonged exposure of domestic rabbit to a lower dosage of extracted microcystins. Environ Toxicol Pharmacol 27:195–199

    Article  CAS  Google Scholar 

  • Zurawell RW, Chen H, Burke JM, Prepas BR (2005) Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environment. J Toxicol Environ Health B 8:1–37

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Spanish CICYT (AGL2006-06523) for the financial support for this study and the Cell Culture Service of Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) and Dr. Vitorica research group for providing technical assistance. The authors are also very grateful to the Centro Superior de Investigaciones Científicas (CSIC) for granting access to their facilities to culture cyanobacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Jos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puerto, M., Gutiérrez-Praena, D., Prieto, A.I. et al. Subchronic effects of cyanobacterial cells on the transcription of antioxidant enzyme genes in tilapia (Oreochromis niloticus). Ecotoxicology 20, 479–490 (2011). https://doi.org/10.1007/s10646-011-0600-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0600-x

Keywords

Navigation