Skip to main content
Log in

Influence of P-glycoprotein on embryotoxicity of the antifouling biocides to sea urchin (Strongylocentrotus intermedius)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

P-glycoprotein (P-gp), as an ATP-binding cassette transporter, transports a wide variety of substrates varying from small molecules like steroids to large polypeptides across the cell membrane in human and animals, even in aquatic animals. Although P-gp protein has attracted much attention of research, its effect on the toxicity of environmental toxicants such as antifouling biocides is still poorly understood. The goal of this study is to evaluate whether copper pyrithione (CuPT), Sea-Nine 211, dichlofluanid and tolylfluanid, four widely used antifouling agents, can be transported by P-gp in embryos of sea urchin Strongylocentrotus intermedius in the presence and absence of the P-gp inhibitor verapamil. Cytotoxcicities of Sea-Nine 211 (EC50 = 99 nM, at 4-arm pluteus) and dichlofluanid (EC50 = 144 nM, at multi-cell) are enhanced by the addition of the P-gp inhibitor, indicating that the two biocides are potential P-gp substrates. Tolylfluanid and CuPT are not transported by P-gp out of the cell, since no obvious changes in the cytotoxicities of the two biocides are observed no matter whether verapamil is added or not. In addition, to understand the mechanisms of ligand binding and its interaction with P-gp, a three-dimensional model of the sea urchin P-gp is generated based on the mouse crystal structure by using homology modeling approach. With this model, a flexible docking is performed and the results indicate that Sea-Nine 211 and dichlofluanid share the same binding site with verapamil, composed of key residues Lys677, Lys753, Thr756, Ala780, Met1033 and Phe1037, whereas tolylfluanid and CuPT display totally different binding modes to P-gp. This further demonstrates that Sea-Nine 211 and dichlofluanid are P-gp substrates, which provides us with new insights into the interactions of P-gp with the antifouling contaminants in aquatic invertebrate embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aller SG, Yu J, Ward A et al (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722

    Article  CAS  Google Scholar 

  • Alzieu C (2000) Environmental impact of TBT: the French experience. Sci Total Environ 258:99–102

    Article  CAS  Google Scholar 

  • Balayssaca D, Authier N, Cayreb A et al (2005) Does inhibition of P-glycoprotein lead to drug–drug interactions? Toxicol Lett 156:319–329

    Article  Google Scholar 

  • Bellas J (2007) Toxicity of the booster biocide sea-Nine to the early developmental stages of the sea urchin Paracentrotus lividus. Aquat Toxicol 83:52–61

    Article  CAS  Google Scholar 

  • Bliss CI (1935) The calculation of the dosage-mortality curve. Ann Appl Biol 22:134–167

    Article  CAS  Google Scholar 

  • Boiocchi M, Toffoli G (1992) Mechanisms of multidrug resistance in human tumour cell lines and complete reversion of cellular resistance. Eur J Cancer 28:1099–1105

    Article  Google Scholar 

  • Bošnjak I, Šegvić T, Smital T et al (2010) Sea urchin embryotoxicity test for environmental contaminants—potential role of the MRP proteins. Water Air Soil Pollut (in press). doi:10.1007/s11270-010-0615-6

  • Epel D, Cole B, Hamdoun A et al (2006) The sea urchin embryo as a model for studying efflux transporters: roles and energy cost. Mar Environ Res 62:S1–S4

    Article  CAS  Google Scholar 

  • Evans SM, Birchenough AC, Brancato MS (2000) The TBT ban: out from the frying pan into the fire? Mar Poll Bull 40:204–211

    Article  CAS  Google Scholar 

  • Ford JM, Hait WN (1990) Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 42:155–199

    CAS  Google Scholar 

  • Gatidou G, Thomaidis NS, Zhou JL (2007) Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ Int 33:70–77

    Article  CAS  Google Scholar 

  • Hamdouna AM, Cherr GN, Roepke TA et al (2004) Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus). Dev Biol 276:452–462

    Article  Google Scholar 

  • Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    Article  CAS  Google Scholar 

  • Hiroya H, Yoshikazu Y, Sayaka E et al (2007) Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan. Arch Environ Contam Toxicol 52:179–188

    Article  Google Scholar 

  • Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511

    Article  CAS  Google Scholar 

  • Kevin VT, Mathew M, Martin H et al (2003) Increased persistence of antifouling paint biocides when associated with paint particles. Environ Pollut 123:153–161

    Article  Google Scholar 

  • Koutsaftis A, Aoyama I (2007) Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Sci Total Environ 387:166–174

    Article  CAS  Google Scholar 

  • Kueh CSW, Lam JYC (2008) Monitoring of toxic substances in the Hong Kong marine environment. Mar Pollut Bull 57:744–757

    Article  CAS  Google Scholar 

  • Leslie EM, Deeleyb RG, Cole SPC (2005) Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204:216–237

    Article  CAS  Google Scholar 

  • Loo TW, Clarke DM (2001) Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, sMTS-verapamil. J Biol Chem 276:14972–14979

    Article  CAS  Google Scholar 

  • Pagano G, Cipollaro M, Corsale G, Esposito A, Ragucci E, Giordano GG, Trieff NM (1986) The sea urhcin: bioassay for the assessment of damage from environmental contaminants. In: Cairns J, Jr (ed) Community toxicity testing. ASTM STP 920, pp 66–92

  • HMSO(1998). Pesticides 1998: reference book 500. HMSO London

  • Porretta D, Gargani M, Bellini R et al (2008) Defence mechanisms against insecticides temephos and diflubenzuron in the mosquito Aedes caspius: the P-glycoprotein efflux pumps. Med Vet Entomol 22:48–54

    Article  CAS  Google Scholar 

  • Sandel BB, Dumas RH, Turley PA (2003) Antimicrobial protection for plastic structures. US Patent 10/722,928

  • Shabbir A, DiStasio S, Zhao J et al (2005) Differential effects of the organochlorine pesticide DDT and its metabolite p,p′-DDE on p-glycoprotein activity and expression. Toxicol Appl Pharmacol 203:91–98

    Article  CAS  Google Scholar 

  • Sun XF, Ding J, Huang HH et al (2009) Study of drug-efflux function of P-glycoprotein in different developmental stages of sea urchin embryos. Asian J Ecotoxic 4:428–434

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ et al (1994) Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Townsin RL (2003) The ship hull fouling penalty. Biofouling 19(Suppl):9–15

    Article  Google Scholar 

  • Van Tellingen O (2001) The importance of drug-transporting P-glycoproteins in toxicology. Toxicol Lett 120:31–41

    Article  Google Scholar 

  • Varma MV, Ashokraj Y, Dey CS et al (2003) P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res 48:347–359

    Article  CAS  Google Scholar 

  • Venn AA, Quinn J, Jones R et al (2009) P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants. Aquat Toxicol 93:188–195

    Article  CAS  Google Scholar 

  • Voulvoulis N, Scrimshaw MD, Lester JN (2002) Comparative environmental assessment of biocides used in antifouling paints. Chemosphere 47:789–795

    Article  CAS  Google Scholar 

  • Wang YH, Li Y, Yang SL, Yang L (2005) Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J Chem Inf Model 45:750–757

    Article  CAS  Google Scholar 

  • Whalen KE, Sotka EE, Goldstone JV, Hahn ME (2010) The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals. Comp Biochem Physiol C 152:288–300

    Google Scholar 

  • Xu X, Wang X, Li Y, Wang Y, Wang Y (2010a) Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis. Hum Exp Toxicol (in press). doi:10.1177/0960327110385958

  • Xu X, Li Y, Wang Y et al (2010b) Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Toxicol In Vitro (in press). doi:10.1016/j.tiv.2010.09.007

  • Yusa K, Tsuruo T (1989) Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res 45:5002–5006

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NWSUAF innovation fund. The authors are also grateful to Prof. L. Yang for access to SYBYL package software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Fu, J., Wang, H. et al. Influence of P-glycoprotein on embryotoxicity of the antifouling biocides to sea urchin (Strongylocentrotus intermedius). Ecotoxicology 20, 419–428 (2011). https://doi.org/10.1007/s10646-011-0593-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0593-5

Keywords

Navigation