, Volume 20, Issue 2, pp 385–396 | Cite as

Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida)

  • W. A. Shoults-Wilson
  • Oksana I. Zhurbich
  • David H. McNear
  • Olga V. Tsyusko
  • Paul M. Bertsch
  • Jason M. Unrine


Silver nanoparticles have been incorporated into a wide variety of consumer products, ideally acting as antimicrobial agents. Silver exposure has long been known to cause toxic effects to a wide variety of organisms, making large scale production of silver nanoparticles a potential hazard to environmental systems. Here we describe the first evidence that an organism may be able to sense manufactured nanoparticles in a complex, environmentally relevant exposure and that the presence of nanoparticles alters the organism’s behavior. We found that earthworms (Eisenia fetida) consistently avoid soils containing silver nanoparticles and AgNO3 at similar concentrations of Ag. However, avoidance of silver nanoparticles occurred over 48 h, while avoidance of AgNO3 was immediate. It was determined that avoidance of silver nanoparticles could not be explained by release of silver ions or any changes in microbial communities caused by the introduction of Ag. This leads us to conclude that the earthworms were in some way sensing the presence of nanoparticles over the course of a 48 h exposure and choosing to avoid exposure to them. Our results demonstrate that nanoparticle interactions with organisms may be unpredictable and that these interactions may result in ecologically significant effects on behavior at environmentally relevant concentrations.


Silver nanoparticle Earthworm behavior Toxicity Chemosensory Soil environment 

Supplementary material

10646_2010_590_MOESM1_ESM.pdf (199 kb)
Supplementary material 1 (PDF 199 kb)


  1. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong YL (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm 233:404–410CrossRefGoogle Scholar
  2. Alvarenga P, Palma P, Goncalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of tests to assess the quality of mine-contaminated soils. Environ Geochem Health 30:95–99CrossRefGoogle Scholar
  3. Asharani PV, Wu YL, Gong ZY, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:1–8CrossRefGoogle Scholar
  4. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910CrossRefGoogle Scholar
  5. Bengtsson G, Nordstrom S, Rundgren S (1983) Population-density and tissue metal concentration of Lumbricids in forest soils near a brass mill. Environ Pollut Ser A 30:87–108CrossRefGoogle Scholar
  6. Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRefGoogle Scholar
  7. Bonkowski M, Griffiths BS, Ritz K (2000) Food preferences of earthworms for soil fungi. Pedobiologia 44:666–676CrossRefGoogle Scholar
  8. Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94:320–327CrossRefGoogle Scholar
  9. Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588CrossRefGoogle Scholar
  10. Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu ZQ (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074CrossRefGoogle Scholar
  11. Curry JP, Schmidt O (2006) The feeding ecology of earthworms—a review. Pedobiologia 50:463–477CrossRefGoogle Scholar
  12. Daoust CM, Bastien C, Deschenes L (2006) Influence of soil properties and aging on the toxicity of copper on compost worm and barley. J Environ Qual 35:558–567CrossRefGoogle Scholar
  13. Darwin C (1881) The formation of vegetable mould through the action of worms with observations on their habits. J. Murray, LondonGoogle Scholar
  14. Doube BM, Schmidt O, Killham K, Correll R (1997) Influence of mineral soil on the palatability of organic matter for lumbricid earthworms: a simple food preference study. Soil Biol Biochem 29:569–575CrossRefGoogle Scholar
  15. Eijsackers H, Beneke P, Maboeta M, Louw JPE, Reinecke AJ (2005) The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol Environ Saf 62:99–111CrossRefGoogle Scholar
  16. Findlay RH, Dobbs FC (1993) Quantitative description of microbial communities using lipid analysis. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbiology. FL Pages, Lewis Publishers, Boca Raton, pp 271–294Google Scholar
  17. Gongalsky KB, Belorustseva SA, Kuznetsova DM, Matyukhin AV, Pelgunova LA, Savin FA, Shapovalov AS (2009) Spatial avoidance of patches of polluted chernozem soils by soil invertebrates. Insect Sci 16:99–105CrossRefGoogle Scholar
  18. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered canomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  19. Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978CrossRefGoogle Scholar
  20. Horn MA, Schramm A, Drake HL (2003) The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69:1662–1669CrossRefGoogle Scholar
  21. Hund-Rinke K, Lindemann M, Simon M (2005) Experiences with novel approaches in earthworm testing alternatives. J Soils Sediments 5:233–239CrossRefGoogle Scholar
  22. ISO (2008) Soil quality—Avoidance test for determining the quality of soils and effects of chemicals on behavior—Part 1: test with earthworms (Eisenia fetida and Eisenia andrei). International Organization for Standardization, 17512-1Google Scholar
  23. Klok C, Goedhart PW, Vandecasteele B (2007) Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals. Environ Pollut 147:26–31CrossRefGoogle Scholar
  24. Knapp MF, Mill PJ (1968) Chemoreception and efferent sensory impulses in Lumbricus terrestris Linn. Comp Biochem Physiol 25:523–528Google Scholar
  25. Kvitek L, Vanickova M, Panacek A, Soukupova J, Dittrich M, Valentova E, Prucek R, Bancirova M, Milde D, Zboril R (2009) Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem C 113:4296–4300CrossRefGoogle Scholar
  26. Laban G, Nies LF, Turco RF, Bickham JW, Sepulveda MS (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–195CrossRefGoogle Scholar
  27. Langdon CJ, Hodson ME, Arnold RE, Black S (2005) Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test. Environ Pollut 138:368–375CrossRefGoogle Scholar
  28. Laverack MS (1960) Tactile and chemical perception in earthworms-I. Responses to touch, sodium chloride, quinine and sugars. Comp Biochem Physiol 1:155–163Google Scholar
  29. Laverack MS (1961) Tactile and chemical perception in earthworms-II. Responses to acid pH solutions. Comp Biochem Physiol 2:22–34Google Scholar
  30. Loureiro S, Soares AMVM, Nogueira AJA (2005) Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environ Pollut 138:121–131CrossRefGoogle Scholar
  31. Lukkari T, Haimi J (2005) Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Ecotoxicol Environ Saf 62:35–41CrossRefGoogle Scholar
  32. Lukkari T, Aatsinki M, Vaisanen A, Haimi J (2005) Toxicity of copper and zinc assessed with three different earthworm tests. Appl Soil Ecol 30:133–146CrossRefGoogle Scholar
  33. Mill PJ (1982) Recent developments in earthworm neurobiology. Comp Biochem Physiol Part A Physiol 73:641–661CrossRefGoogle Scholar
  34. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  35. Nahmani J, Hodson ME, Black S (2007) Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils. Environ Pollut 149:44–58CrossRefGoogle Scholar
  36. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964CrossRefGoogle Scholar
  37. PA USE (1996) Method 3052: microwave assisted acid digestion of siliceous and organically based matrices. United States Environmental Protection Agency, Washington, DC USAGoogle Scholar
  38. PA USE (1998) Method 6020a: inductively coupled plasma—mass spectrometry. United States Environmental Protection Agency, Washington, DC USAGoogle Scholar
  39. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  40. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340CrossRefGoogle Scholar
  41. Parker GH, Metcalf CR (1906) The reactions of earthworms to salts: a study in protoplasmic stimulation as a basis of interpreting the sense of taste. Am J Physiol 17:0055–0074Google Scholar
  42. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940CrossRefGoogle Scholar
  43. Rombke J, Jansch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:249–265CrossRefGoogle Scholar
  44. Saxe JK, Impellitteri CA, Peijnenburg WJGM, Allen HE (2001) Novel model describing trace metal concentrations in the earthworm, Eisenia andrei. Environ Sci Technol 35:4522–4529CrossRefGoogle Scholar
  45. Schutter ME, Dick RP (2000) Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64:1659–1668CrossRefGoogle Scholar
  46. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010a) Toxicity of silver nanoparticles to the earthworm (Eisenia fetida): the role of particle size and soil type. Soil Sci Soc Am J (in press). doi:10.2136/sssaj2010.0127nps
  47. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010b) Role of particle surface coating for bioaccumulation and reproductive toxicity of silver in earthworms (Eisenia fetida) exposed to silver nanoparticles. Nanotoxicology (in Press) doi:10.3109/17435390.2010.537382
  48. Sokal RR, Rohlf FJ (2003) Biometry, 3rd edn. W. H. Freeman and Company, New YorkGoogle Scholar
  49. Sousa A, Pereira R, Antunes SC, Cachada A, Pereira E, Duarte AC, Goncalves F (2008) Validation of avoidance assays for the screening assessment of soils under different anthropogenic disturbances. Ecotoxicol Environ Saf 71:661–670CrossRefGoogle Scholar
  50. Spurgeon DJ, Lofts S, Hankard PK, Toal M, McLellan D, Fishwick S, Svendsen C (2006) Effect of pH on metal speciation and resulting metal uptake and toxicity for earthworms. Environ Toxicol Chem 25:788–796CrossRefGoogle Scholar
  51. Stephenson GL, Kaushik A, Kaushik NK, Solomon KR, Steele T, Scroggins RP (1998) Use of an avoidance-response test. In: Sheppard SC, Bembridge J, Holmstrup M, Posthuma L (eds) Advances in earthworm ecotoxicology. SETAC Press, PensacolaGoogle Scholar
  52. Unrine JM, Hopkins WA, Romanek CS, Jackson BP (2007) Bioaccumulation of trace elements in omnivorous amphibian larvae: implications for amphibian health and contaminant transport. Environ Pollut 149(2):182–192CrossRefGoogle Scholar
  53. Van Zwieten L, Rust J, Kingston T, Merrington G, Morris S (2004) Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Sci Total Environ 329:29–41CrossRefGoogle Scholar
  54. Vijver MG, Vink JPM, Miermans CJH, van Gestel CAM (2003) Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol Biochem 35:125–132CrossRefGoogle Scholar
  55. Vorobeichik EL (1998) Populations of earthworms (Lumbricidae) in forests of the middle urals in conditions of pollution by discharge from copper works. Russ J Ecol 29:85–91Google Scholar
  56. Wentsel RS, Guelta MA (1988) Avoidance of brass powder-contaminated soil by the earthworm, Lumbricus terrestris. Environ Toxicol Chem 7:241–243Google Scholar
  57. Wright MA (1972) Factors governing ingestion by earthworm Lumbricus-Terrestris (L), with special reference to apple leaves. Ann Appl Biol 70:175–188Google Scholar
  58. Yeardley RB, Lazorchak JM, Gast LC (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem 15:1532–1537CrossRefGoogle Scholar
  59. Yeo MK, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29:1179–1184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • W. A. Shoults-Wilson
    • 1
  • Oksana I. Zhurbich
    • 1
  • David H. McNear
    • 1
  • Olga V. Tsyusko
    • 1
  • Paul M. Bertsch
    • 1
  • Jason M. Unrine
    • 1
  1. 1.Department of Plant and Soil SciencesN-212N, Agricultural Science Center North, University of KentuckyLexingtonUSA

Personalised recommendations