Skip to main content
Log in

Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Investigation of mercury toxicology in green algae is of great importance from ecological point of view, because mercury has become a major contaminant in recent years. In higher plants, accumulation of mercury modifies many aspects of cellular functions. However, the process that mercury exerts detrimental effects on green algae is largely unknown. In this study, we performed an experiment focusing on the biological responses of Chlamydomonas reinhardtii, a unicellular model organism, to Hg2+-induced toxicity. C. reinhardtii was exposed to 0, 1, 2, 4, 6, and 8 μM Hg in media. Concentrations of Hg were negatively correlated with the cell growth. Treatment with Hg induced accumulation of reactive oxygen species and peroxidative products. Endogenous proline levels increased in Hg-exposed algae. Hg exposure activated superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). To get insights into the molecular response, a RT-PCR-based assay was performed to analyze the transcript abundance of Mn-SOD, CAT and APX. Our analysis revealed that expression of the genes was up-regulated by Hg exposure, with a pattern similar to the enzyme activities. Additional investigation was undertaken on the effect of Hg on the transcript amount of ∆1-pyrroline-5-carboxylate synthetase, a key enzyme of proline biosynthesis and on that of heme oxygenase-1 (HO-1), an enzyme regulating heavy metal tolerance. Expressions of both P5CS and HO-1 were up-regulated by Hg. These data indicate that Hg-induced oxidative stress was responsible for the disturbance of the growth and antioxidant defensive systems in C. reinhardtii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Alia MP, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:191–203

    Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Tear ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp CH, Fridovixh I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores MM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006

    Article  CAS  Google Scholar 

  • Chen J, Shiyab S, Han FX, Monts DL, Waggoner CA, Yang ZM, Su Y (2009a) Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18:110–121

    Article  CAS  Google Scholar 

  • Chen J, Yang ZM, Su Y, Han FX, Monts DL (2009b) Phytoremediation of heavy metal/metalloid-contaminated soils. In: Steinberg RV (ed) Contaminated soils: environmental impact, disposal and treatment. Nova Science Publishers, Inc., NY

    Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Cuyers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Plant 110:512–517

    Article  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes, production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  Google Scholar 

  • Dennis IF, Clair TA, Driscoll CT, Kamman N, Chalmers A, Shanley J, Norton SA, Kahl S (2005) Distribution patterns of mercury in lakes and rivers of northeastern North America. Ecotoxicology 14:113–123

    Article  CAS  Google Scholar 

  • Domínguez-Solís JR, López-Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476

    Article  Google Scholar 

  • Evers DC, Savoy LJ, DeSorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley JC Jr, Bank MS, Major A, Munney K, Mower BF, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81

    Article  CAS  Google Scholar 

  • Godbold DL (1991) Mercury-induced root damage in spruce seedlings. Water Air Soil Pollut 56:823–831

    Article  CAS  Google Scholar 

  • Han FX, Banin A, Su Y, Monts DL, Plodinec MJ, Kingery WL, Triplett GB (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504

    Article  CAS  Google Scholar 

  • Han FX, Su Y, Monts DL, Waggoner AC, Plodinec JM (2006) Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci Total Environ 368:753–768

    Article  CAS  Google Scholar 

  • Hu S, Lau KWK, Wu M (2001) Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci 161:987–996

    Article  CAS  Google Scholar 

  • Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated new microRNAs from rice. J Inorg Biochem 103:282–287

    Article  CAS  Google Scholar 

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs from Brassica napus in response to sulfate-deficiency and cadmium stress. Plant Biotechnol J. doi:10.1111/j.1467-7652.2010.00517.x

  • Hylander LD (2001) Globla mercury pollution and its expected decrease after a mercury trade ban. Water Air Soil Pollut 125:331–344

    Article  CAS  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598

    Article  CAS  Google Scholar 

  • Keyse SM, Tyrrell RM (1989) Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UV radiation, hydrogen peroxide and sodium arsenate. Proc Natl Acad Sci USA 86:99–103

    Article  CAS  Google Scholar 

  • Khedr AH, Abbas MA, Wahid AA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Article  CAS  Google Scholar 

  • Lee Y, Bak G, Choi Y, Chuang WI, Cho HT (2008) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–635

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (1999) Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259

    Article  CAS  Google Scholar 

  • Miller G, Stein H, Honing A, Kapulnik Y, Zilberstein A (2005) Responsive modes of Medicago sativa proline dehydrogenase genes during salt and recovery dictate free proline accumulation. Planta 222:70–79

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcoy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle AMC, Tomaro ML (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Biophys Res Commun 323:1003–1008

    Article  CAS  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Pedersen AL, Feldner HC, Rosendahl L (1996) Effect of proline on nitrogenase activity in symbiosomes from root nodules of soybean (Glycine max L.) subjected to drought stress. J Exp Bot 47:1533–1539

    Article  CAS  Google Scholar 

  • Peterson SA, Van Sickle J (2007) Mercury concentration in fish from streams and rivers throughout the western United States. Environ Sci Technol 41:58–65

    Article  CAS  Google Scholar 

  • Puckette MC, Hua Weng, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45:70–79

    Article  CAS  Google Scholar 

  • Shah K, Dubey RS (1998) Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol Plant 40:121–130

    Article  Google Scholar 

  • Shibahara S, Muller RM, Taguchi H (1987) Transcriptional control of rat heme oxygenase by heat shock. J Biol Chem 262:12889–12892

    CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  Google Scholar 

  • Solomon A, Beer S, Waisel Y, Jones GP, Paleg LG (1994) Effect of NaCl on the carboxylating activity of Rubisco from Tamaxis jordanis in presence and absence of proline-related compatible solutes. Physiol Plant 90:198–204

    Article  CAS  Google Scholar 

  • Song NH, Yin XL, Chen GF, Yang H (2007) Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 69:1779–1787

    Article  Google Scholar 

  • Srisook K, Jung NH, Kim BR, Cha SH, Kim HS, Cha YN (2005) Heme oxygenase-1-mediated partial cytoprotective effect by NO on cadmium-induced cytotoxicity in C6 rat glioma cells. Toxicol In Vitro 19:31–39

    Article  CAS  Google Scholar 

  • Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H (2008) Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot 59:3465–3474

    Article  CAS  Google Scholar 

  • Sun XM, Bo Lu, Xu LL, Wang SQ, Mehta SK, Yang ZM (2007) Coordinated expression of sulfate transporters and its relation with sulfur metabolites in Brassica napus exposed to cadmium. Bot Stud 48:43–54

    CAS  Google Scholar 

  • Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation and distribution in willow. J Environ Qual 33:1779–1785

    Article  CAS  Google Scholar 

  • Wang SH, Yang ZM, Lu B, Li SQ, Lu YP (2004) Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Bot Bull Acad Sin 45:203–212

    CAS  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (20877041) and National Foundation for Fostering Talents of Basic Science (J0730647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Min Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbaz, A., Wei, Y.Y., Meng, Q. et al. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii . Ecotoxicology 19, 1285–1293 (2010). https://doi.org/10.1007/s10646-010-0514-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-010-0514-z

Keywords

Navigation