, Volume 19, Issue 7, pp 1183–1192 | Cite as

Attraction of the parasitoid Cotesia marginiventris to host (Spodoptera frugiperda) frass is affected by transgenic maize

  • Nicolas Desneux
  • Ricardo Ramírez-Romero
  • Aimé H. Bokonon-Ganta
  • Julio S. Bernal


We assessed in the laboratory the attraction of the parasitoid Cotesia marginiventris (Cresson) toward odors emitted by conventional maize (Zea mays L. ssp. mays) and Bt (Bacillus thuringiensis) maize seedlings following actual or simulated injury by Spodoptera frugiperda (Smith), the parasitoid’s host, and emitted by the host’s frass, produced following consumption of conventional or Bt maize seedlings. Females of C. marginiventris exhibited similarly strong responses to conventional and Bt maize seedlings injured by the host or with simulated injury, and these were stronger than responses to clean air. In contrast, the responses of C. marginiventris females were consistently weaker toward host frass derived from Bt maize tissue compared to frass derived from conventional maize tissue. We hypothesized that the weakened response was due to a detrimental effect of Bt endotoxins, present in the Bt maize tissue, on the bacterial community present in the host’s gut and frass, including bacteria that produce odors attractive to C. marginiventris. As an initial test of our hypothesis, we compared between the responses of C. marginiventris females to host frass produced following consumption of Bt maize and frass produced from conventional maize which had been treated with an antibiotic (tetracycline) to eliminate host gut bacteria. Our results showed that C. marginiventris females responded similarly weakly to host frass derived from conventional maize tissue treated with antibiotic and to frass derived from Bt maize tissue, treated or untreated with antibiotic, while they responded strongly to frass derived from conventional maize untreated with antibiotic, so provided initial, partial support for our hypothesis. We discussed the weakened response of C. marginiventris females to host frass derived from Bt maize in the context of plausible impacts of transgenic crop cultivars on parasitoid foraging and populations, and the implications for biological control of non-target, polyphagous pests, such as S. frugiperda.


Bacillus thuringiensis Bt Spodoptera frugiperda Biological control Kairomones Sublethal effects Non-target effects 



We thank Jetske deBoer (University of Minnesota), Brad Vinson, Jeff Tomberlin (Texas A&M University), Robert Wiedenmann (University of Arkansas), and two anonymous reviewers for helpful comments that greatly improved the manuscript. Voucher specimens were deposited in the Texas A&M University Insect Collection. Partial funding for this project was provided through projects Hatch # H8707 and USDA-NRI-CGP # 99-35316-7913.


  1. AgBios (2009) Database product description: MON810. The AgBios Company. Accessed 12 March 2010
  2. Agelopoulos NG, Dicke M, Posthumus MA (1995) Role of volatile infochemicals emitted by feces of larvae in host-searching behavior of parasitoid Cotesia rubecula (Hymenoptera: Braconidae): a behavioral and chemical study. J Chem Ecol 21:1789–1811CrossRefGoogle Scholar
  3. Andow DA, Lovei GL, Arpaia S (2006) Ecological risk assessment for Bt crops. Nat Biotechnol 24:749–751CrossRefGoogle Scholar
  4. Aranda E, Sanchez J, Peferoen M, Guereca L, Bravo A (1996) Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Invertebr Pathol 68:203–212CrossRefGoogle Scholar
  5. Ashley TR (1986) Geographical distribution and parasitization levels of parasitoids of the fall armyworm, Spodoptera frugiperda. Fla Entomol 69:516–524CrossRefGoogle Scholar
  6. Auger J, Lecomte C, Thibout E (1990) Origin of kairomones in the leek moth (Acrolepiopsis assectella, Lep.) frass. Possible pathway from methylthio to propylthio compounds. J Chem Ecol 16:1743–1750CrossRefGoogle Scholar
  7. Bernal JS (2010) Genetically modified crops and biological control with egg parasitoids. In: Consoli FL, Parra JRP, Zucchi RA (eds) Egg parasitoids in agroecosystems with emphasis on Trichogramma (Progress in biological control). Springer, Amsterdam (in press)Google Scholar
  8. Bernal JS, Sétamou M (2003) Fortuitous antixenosis in transgenic sugarcane: antibiosis-expressing cultivar deters oviposition by herbivore pests. Environ Entomol 32:886–894CrossRefGoogle Scholar
  9. Bernal JS, Prasifka J, Sétamou M, Heinz KM (2004) Transgenic insecticidal cultivars in integrated pest management: challenges and opportunities. In: Koul O, Dhaliwal GS, Cuperus G (eds) Integrated pest management: potential, constraints and challenges. CABI Publishing, Wallingford, pp 123–145CrossRefGoogle Scholar
  10. Bokonon-Ganta AH, Bernal JS, Pietrantonio PV, Sétamou M (2003) Survivorship and development of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), on conventional and transgenic maize cultivars expressing Bacillus thuringiensis Cry9C and Cry1A(b) endotoxins. Int J Pest Manag 49:169–175CrossRefGoogle Scholar
  11. Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci USA 103:15196–15199CrossRefGoogle Scholar
  12. Broderick NA, Robinson CJ, McMahon MD, Holt J, Handelsman J, Raffa KF (2009) Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol 7:11CrossRefGoogle Scholar
  13. Chiu-Alvarado P, Barrera JF, Rojas JC (2009) Attraction of Prorops nasuta (Hymenoptera: Bethylidae) a parasitoid of the coffee berry borer (Coleoptera: Curculionidae), to host-associated olfactory cues. Ann Entomol Soc Am 102:166–171CrossRefGoogle Scholar
  14. Chuche J, Xuereb A, Thiery D (2006) Attraction of Dibrachys cavus (Hymenoptera: Pteromalidae) to its host frass volatiles. J Chem Ecol 32:2721–2731CrossRefGoogle Scholar
  15. de Polanía IZ, Maldonado HAA, Cruz RM, Sánchez JLD (2009) Spodoptera frugiperda: respuesta de distintas poblaciones a la toxina Cry1Ab. Rev Colomb Entomol 35:34–41Google Scholar
  16. Dean JM, De Moraes CM (2006) Effects of genetic modification on herbivore-induced volatiles from maize. J Chem Ecol 32:713–724CrossRefGoogle Scholar
  17. Desneux N, Pham-Delègue MH, Kaiser L (2004) Effects of sublethal and lethal doses of lambda-cyhalothrin on oviposition experience and host searching behaviour of a parasitic wasp, Aphidius ervi. Pest Manag Sci 60:381–389CrossRefGoogle Scholar
  18. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  19. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: non-pathogenic interactions. Annu Rev Entomol 49:71–92CrossRefGoogle Scholar
  20. Dudai Y (1989) The neurobiology of memory. Oxford University Press, New YorkGoogle Scholar
  21. Favret ME, Yousten AA (1989) Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 53:206–216CrossRefGoogle Scholar
  22. Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608CrossRefGoogle Scholar
  23. Hilbeck A, Schmidt JEU (2006) Another view on Bt proteins—how specific are they and what else might they do? Biopestic Int 2:1–50Google Scholar
  24. Inayatullah C (1983) Host selection by Apanteles flavipes (Cameron) (Hymenoptera: Braconidae): influence of host and host plant. J Econ Entomol 76:1086–1087Google Scholar
  25. James C (2004) Global status of commercialised biotech/GMcrops: 2004. ISAAA Briefs, No. 32. International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NYGoogle Scholar
  26. Krieg A (1970) Thuricin, a bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 15:291CrossRefGoogle Scholar
  27. Loke WH, Ashley TR (1984) Behavioral and biological response of Cotesia marginiventris to kairomones of the fall armyworm, Spodoptera frugiperda. J Chem Ecol 10:521–529CrossRefGoogle Scholar
  28. Lovei GL, Andow DA, Arpaia S (2009) Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ Entomol 38:293–306CrossRefGoogle Scholar
  29. Lumbierres B, Albajes R, Pons X (2004) Transgenic Bt maize and Rhopalosiphum padi (Hom., Aphididae) performance. Ecol Entomol 29:309–317CrossRefGoogle Scholar
  30. Lundgren JG, Gassmann AJ, Bernal J, Duan JJ, Ruberson J (2009) Ecological compatibility of GM crops and biological control. Crop Prot 28:1017–1030CrossRefGoogle Scholar
  31. Marsh PM, Carlson RW (1979) Superfamily Ichneumonoidea. In: Krombein KV, Hurd PD Jr, Smith DR, Burks BD (eds) Catalog of Hymenoptera of America north of Mexico. Smithsonian Institution Press, Washington, DC, pp 143–741Google Scholar
  32. Mattiacci L, Dicke M (1995) The parasitoid Cotesia glomerata (Hymenoptera: Braconidae) discriminates between first and fifth larval instars of its host Pieris brassicae, on the basis of contact cues from frass, silk, and herbivore-damaged leaf tissue. J Insect Behav 8:485–498CrossRefGoogle Scholar
  33. Meyhöfer R, Casas J, Dorn S (1994) Host location by a parasitoid using leafminer vibrations—characterizing the vibrational signals produced by the leafmining host. Physiol Entomol 19:349–359CrossRefGoogle Scholar
  34. Monnerat R, Martins E, Queiroz P et al (2006) Genetic variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to Bacillus thuringiensis Cry toxins. Appl Environ Microbiol 72:7029–7035CrossRefGoogle Scholar
  35. Monteith LG (1963) Habituation and associative learning in Drino bohemica Mesn. (Diptera: Tachinidae). Can Entomol 95:418–426CrossRefGoogle Scholar
  36. Ngi-Song AJ, Overholt WA (1997) Host location and acceptance by Cotesia flavipes Cameron and C. sesamiae (Cameron) (Hymenoptera: Braconidae), parasitoids of African gramineous stemborers: role of frass and other host cues. Biol Control 9:136–142CrossRefGoogle Scholar
  37. O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292CrossRefGoogle Scholar
  38. Olesinski AA, Lucas WJ, Galun E, Wolf S (1995) Pleiotropic effects of tobacco-mosaic-virus movement protein on carbon metabolism in transgenic tobacco plants. Planta 197:118–126CrossRefGoogle Scholar
  39. Pendleton IR (1969) Ecological significance of antibiotics of some varieties of Bacillus thuringiensis. J Invertebr Pathol 13:235–240CrossRefGoogle Scholar
  40. Potting RPJ, Vet LEM, Dicke M (1995) Host microhabitat location by stem-borers parasitoids Cotesia flavipes: the role of herbivore volatiles and locally and sytemically induced plant volatiles. J Chem Ecol 21:525–539CrossRefGoogle Scholar
  41. Ramírez-Romero R (2004) Side effects of the Bt endotoxin Cry1Ab and of insecticides on biological and behavioural traits of the honey bee Apis mellifera and the parasitoid Cotesia marginiventris. PhD dissertation, University of Paris XIII, FranceGoogle Scholar
  42. Ramírez-Romero R, Chaufaux J, Pham-Delègue MH (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36:601–611CrossRefGoogle Scholar
  43. Ramírez-Romero R, Bernal JS, Chaufaux J, Kaiser L (2007) Impact assessment of Bt-maize on a moth parasitoid, Cotesia marginiventris (Hymenoptera: Braconidae), via host exposure to purified Cry1Ab protein or Bt-plants. Crop Prot 26:953–962CrossRefGoogle Scholar
  44. Ramírez-Romero R, Desneux N, Decourtye A, Chaffiol A, Pham-Delègue MH (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L? Ecotoxicol Environ Saf 70:327–333CrossRefGoogle Scholar
  45. Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71CrossRefGoogle Scholar
  46. Rose USR, Alborn HT, Makranczy G, Lewis WJ, Tumlinson JH (1997) Host recognition by the specialist endoparasitoid Microplitis croceipes. J Insect Behav 10:313–330CrossRefGoogle Scholar
  47. Ruberson JR, Herzog GA, Lambert WR, Lewis WJ (1994) Management of beet armyworm (Lepidoptera: Noctuidae) in cotton: role of natural enemies. Fla Entomol 77:440–453CrossRefGoogle Scholar
  48. Sanders CJ, Pell JK, Poppy GM, Raybould A, Garcia-Alonso M, Schuler TH (2007) Host-plant mediated effects of transgenic maize on the insect parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae). Biol Control 40:362–369CrossRefGoogle Scholar
  49. Sandoz JC, Laloi D, Odoux JF, Pham-Delègue MH (2000) Olfactory information transfer in the honeybee: compared efficiency of classical conditioning and early exposure. Anim Behav 59:1025–1034CrossRefGoogle Scholar
  50. Schuler TH, Potting RPJ, Denholm I, Poppy GM (1999) Parasitoid behavior and Bt plants. Nature 400:825–826CrossRefGoogle Scholar
  51. Schuler TH, Potting RPJ, Denholm I, Clark SJ, Clark AJ, Stewart CN, Poppy GM (2003) Tritrophic choice experiments with Bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Transgenic Res 12:351–361CrossRefGoogle Scholar
  52. Sétamou M, Bernal JS, Legaspi JC, Mirkov TE (2002) Parasitism and location of sugarcane borer hosts by Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) on transgenic and conventional sugarcane. Environ Entomol 31:1219–1225CrossRefGoogle Scholar
  53. Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–87CrossRefGoogle Scholar
  54. Thibout E, Guillot JF, Auger J (1993) Microorganisms are involved in the production of volatile kairomones affecting the host seeking behaviour of Diadromus pulchellus, a parasitoid of Acrolepiopsis assectella. Physiol Entomol 18:176–182CrossRefGoogle Scholar
  55. Thibout E, Guillot JF, Ferary S, Limouzin P, Auger J (1995) Origin and identification of bacteria which produce kairomones in the frass of Acrolepiopsis assectella (Lep., Hyponomeutoidea). Experientia 51:1073–1075CrossRefGoogle Scholar
  56. Tomov BW, Bernal S, Vinson SB (2003) Impacts of transgenic sugarcane expressing GNA on parasitism of Mexican rice borer by Parallorhogas pyralophagus (Marsh) (Hymenoptera: Braconidae). Environ Entomol 32:866–872CrossRefGoogle Scholar
  57. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253CrossRefGoogle Scholar
  58. Turlings TCJ, McCall PJ, Alborn HT, Tumlinson JH (1993) An elicitor in caterpillar oral secretions that induces maize seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol 19:411–425CrossRefGoogle Scholar
  59. Turlings TCJ, Jeanbourquin PM, Held M, Degen T (2005) Evaluating the induced-odour emission of a Bt maize and its attractiveness to parasitic wasps. Transgenic Res 14:807–816CrossRefGoogle Scholar
  60. Überlacker B, Klinge B, Werr W (1996) Ectopic expression of the maize homeobox genes ZmHox1a or ZmHox1b causes pleiotropic alterations in the vegetative and floral development of transgenic tobacco. Plant Cell 8:349–362CrossRefGoogle Scholar
  61. van Leerdam MB, Smith JW Jr, Fuchs TW (1985) Frass-mediated host-finding behavior of Cotesia flavipes, a braconid parasite of Diatraea saccharalis (Lepidoptera: Pyralidae). Ann Entomol Soc Am 78:647–650Google Scholar
  62. Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172CrossRefGoogle Scholar
  63. Vet LEM, van Lenteren JC, Heymans M, Meelis E (1983) An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol Entomol 8:97–106CrossRefGoogle Scholar
  64. Vinson SB (1984) How parasitoids locate their hosts: a case of insect espionage. In: Lewis T (ed) Insect communication. Academic Press, London, pp 325–348Google Scholar
  65. Vinson SB (1991) Chemical signals used by parasitoids. Redia 74:15–42Google Scholar
  66. Virla EG, Álvarez A, Loto F, Pera LM, Baigorí M (2008) Fall armyworm strains (Lepidoptera: Noctuidae) in Argentina, their associate host plants and response to different mortality factors in laboratory. Fla Entomol 91:63–69CrossRefGoogle Scholar
  67. Visotto LE, Oliveira MGA, Guedes RNC, Ribon AOB, Good-God POV (2009) Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. J Insect Physiol 55:185–191CrossRefGoogle Scholar
  68. Vojtech E, Meissle M, Poppy GM (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesta marginiventris (Hymenoptera: Braconidae). Transgenic Res 14:133–144CrossRefGoogle Scholar
  69. Walker GP, Cameron PJ, MacDonald FM, Madhusudhan VV, Wallace AR (2007) Impacts of Bacillus thuringiensis toxins on parasitoids (Hymenoptera: Braconidae) of Spodoptera litura and Helicoverpa armigera (Lepidoptera: Noctuidae). Biol Control 40:142–151CrossRefGoogle Scholar
  70. Wang YQ, Pan XB, Cui XW, Pan SM (1998) Research on the physiological traits of Bt transgenic cotton R93–4. China Cottons 25:14–16Google Scholar
  71. Weiss MR (2006) Defecation behavior and ecology of insects. Annu Rev Entomol 51:635–661CrossRefGoogle Scholar
  72. Yudina TG, Burtseva LI (1997) Activity of delta-endotoxins of four Bacillus thuringiensis subspecies against prokaryotes. Microbiology 66:17–22Google Scholar
  73. Yudina TG, Milko ES, Egorov NS (1996) Sensitivity of Micrococcus luteus dissociation variants to delta-endotoxins of Bacillus thuringiensis. Microbiology 65:321–325Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nicolas Desneux
    • 1
  • Ricardo Ramírez-Romero
    • 2
  • Aimé H. Bokonon-Ganta
    • 3
  • Julio S. Bernal
    • 4
  1. 1.Unité de Recherches Intégrées en Horticulture, INRASophia-AntipolisFrance
  2. 2.Departamento de Botánica y Zoología, CUCBAUniversidad de GuadalajaraZapopanMexico
  3. 3.Direction de l’agriculture, Service de Protection des VégétauxPorto-NovoBenin
  4. 4.Biological Control Laboratory, Department of Entomology, MS 2475Texas A&M UniversityCollege StationUSA

Personalised recommendations