Skip to main content
Log in

Bioaccumulation and ROS generation in Coontail Ceratophyllum demersum L. exposed to phenanthrene

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Phenanthrene bioaccumulation, induction free radicals and their consequent biochemical responses in coontail (Ceratophyllum demersum L.) were examined. Plants were exposed to different levels (0.01, 0.02, 0.05, 0.07 and 0.1 mg/l) of phenanthrene for 10 days. Results showed that the phenanthrene concentration in the plants was exponentially correlated to exposure concentration (R 2 = 0.958) and phenanthrene exposure significantly increased the total free radicals and superoxide anion in the plants. The activities of antioxidant enzymes and the contents of glutathione were determined. The superoxide dismutase (SOD) activity and reduced glutathione (GSH) content were inhibited, while the catalase (CAT), peroxidase (POD), glutathione-s-transferase (GST) activities and oxidized glutathione (GSSG) content were significantly induced. Changes in the contents of chlorophyll and malondialdehyde (MDA) indicated that the MDA content was enhanced after phenanthrene exposure and the contents of chlorophyll were significantly increased in the 0.01 mg/l group. These experimental data demonstrated that the bioaccumulation of phenanthrene induced the production of free radicals and ROS, and changed the antioxidant defense system, ultimately resulting in oxidative damage in C. demersum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Hoagland PR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

  • Aas E, Baussant T, Balk L, Liewenborg B, Andersen OK (2000) PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquat Toxicol 51:241–258

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Bagchi D, Balmoori J, Bagchi M, Ye X, Williams CB, Stohs SJ (2002) Comparative effects of TCDD, endrin, naphthalene and chromium (VI) on oxidative stress and tissue damage in the liver and brain tissues of mice. Toxicol 175:73–82

    Article  CAS  Google Scholar 

  • Batish DR, Singh HP, Setia N, Kaur S, Kohli RK (2006) 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol Biochem 44:819–827

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Di Giulio RT, Washburn PC, Wenning RJ, Winston GW, Jewell CS (1989) Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ Toxicol Chem 8:1103–1123

    Article  CAS  Google Scholar 

  • Dimitrova M St, Tishinova V, Velcheva V (1994) Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (Cyprinus carpio). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 108:43–46

    Article  Google Scholar 

  • Elstner EF, Osswald W (1994) Mechanisms of oxygen activation during plant stress. Proc R Soc Edinb Nat Environ 102B:131–154

    Google Scholar 

  • Foss BJ, Sliwka HR, Partali V, Cardounel AJ, Zweierb JL, Lockwoodc SF (2004) Direct superoxide anion scavenging by a highly water-dispersible carotenoid phospholipid evaluated by electron paramagnetic resonance (EPR) spectroscopy. Bioorg Med Chem Lett 14:2807–2812

    Article  CAS  Google Scholar 

  • Garnczarska M, Bednarski W (2004) Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots. Plant Physiol Biochem 42:233–240

    Article  CAS  Google Scholar 

  • Ghosh U, Zimmerman JR, Luthy RG (2003) PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environ Sci Technol 37:2209–2217

    Article  CAS  Google Scholar 

  • Gupta M, Chandra P (1998) Bioaccumulation and toxicity of mercury in rooted-submerged macrophyte Vallisneria spiralis. Environ Pollut 103:327–332

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Han Y, Zhang J, Chen XY, Gao ZZ, Xuan W, Xu S, Ding X, Shen WB (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155–156

    CAS  Google Scholar 

  • Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002) Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol Biochem 40:691–696

    Article  CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for the direct determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    Article  CAS  Google Scholar 

  • Juchau MR, Lee QP, Fantel AG (1992) Xenobiotic biotransformation bioactivation in organogenesis-stage conceptual tissues: implications for embryotoxicity and teratogenesis. Drug Metab Rev 24:195–238

    Article  CAS  Google Scholar 

  • Krång A-S (2007) Naphthalene disrupts pheromone induced mate search in the amphipod Corophium volutator (Pallas). Aquat Toxicol 85:9–18

    Article  CAS  Google Scholar 

  • Li YH, Jiang B, Zhang T, Mu WM, Liu J (2008) Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem 106:444–450

    Article  CAS  Google Scholar 

  • Liao BH, Liu HY, Zeng QR, Yu PZ, Probst A, Probst JL (2005) Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L.). Environ Int 31:891–895

    Article  CAS  Google Scholar 

  • Liu HY (2001) Studies of the harmful effects on aquatic plants and the biodegradation of surfactants. Doctorate Dissertation, Hunan Agricultural University, Changsha, China

  • Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666

    Article  CAS  Google Scholar 

  • Mai BX, Fu JM, Sheng GY, Kang YH, Lin Z, Zhang G, Min YS, Zeng EY (2002) Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ Pollut 117:457–474

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Muckenschnabel I, Goodman BA, Williamson B, Lyon GD, Deighton N (2002) Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products. J Exp Bot 53:207–214

    Article  CAS  Google Scholar 

  • Oruc EÖ, Üner N (2000) Combined effects of 2, 4-D and azinphosmethyl on antioxidant enzymes and lipid peroxidation in liver of Oreochromis niloticus. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 127:291–296

    Article  CAS  Google Scholar 

  • Owen AG, Jones DL (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem 33:651–657

    Article  CAS  Google Scholar 

  • Peever TL, Higgins VJ (1989) Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and non specific elicitors from Cladosporium fluvum. Plant Physiol 90:867–875

    Article  CAS  Google Scholar 

  • Qian HF, Chen W, Sun LW, Jin YX, Liu WP, Fu ZW (2009) Inhibitory effects of paraquat on photosynthesis and the response to oxidative stress in Chlorella vulgaris. Ecotoxicology 18:537–543

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DO, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative, stress, and H2O2-metabolizing enzymes. Plant Physiol 115:137–149

    Article  CAS  Google Scholar 

  • Reichenauer TG, Goodman BA (2001) Stable free radicals in ozone-damaged wheat leaves. Free Radic Res 35:93–101

    Article  CAS  Google Scholar 

  • Selote DS, Bharti S, Khanna-Chopra R (2004) Drought acclimation reduces O −·2 accumulation and lipid peroxidation in wheat seedlings. Biochem Biophys Res Commun 314:724–729

    Article  CAS  Google Scholar 

  • Shao Y, Rudolf SSW, Richard YCK (2002) Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquat Toxicol 59:191–200

    Google Scholar 

  • Shi HH, Wang XR, Luo Y, Su Y (2005) Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus. Aquat Toxicol 74:365–371

    Article  CAS  Google Scholar 

  • Stein JE, Collier TK, Reichert WL, Casillas E, Hom T, Varanasi U (1992) Bioindicators of contaminant exposure and sublethal effects: studies with benthic fish in Puget sound, Washington. Environ Toxicol Chem 11:701–714

    Article  CAS  Google Scholar 

  • Sun YY, Yu HX, Zhang JF, Yin Y, Shi HH, Wang XR (2006) Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure. Chemosphere 63:1319–3027

    Article  CAS  Google Scholar 

  • Tukaj Z, Aksmann A (2007) Toxic effects of anthraquinone and phenanthrenequinone upon Scenedesmus strains (green algae) at low and elevated concentration of CO2. Chemosphere 66:480–487

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation of hydroxylamine and superoxide anion radicals in plants. Chin Plant Physiol Commun 6:55–57

    CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  CAS  Google Scholar 

  • Wells PG, Bhuller Y, Chen CS, Jeng W, Kasapinovic S, Kennedy JC, Kim PM, Laposa RR, McCallum GP, Nicol CJ, Parman T, Wiley MJ, Wong AW (2005) Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol 207:S354–S366

    Article  CAS  Google Scholar 

  • Zini R, Berdeaux A, Morin D (2007) The differential effects of superoxide anion, hydrogen peroxide and hydroxyl radical on cardiac mitochondrial oxidative phosphorylation. Free Radic Res 41:1159–1166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yunxia Sui for analysis of EPR spectra. This work was supported by the National Fundamental Research Foundation of China (2009CB421604) and Natural Science Foundation of China (40902067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Wang, X., Yang, L. et al. Bioaccumulation and ROS generation in Coontail Ceratophyllum demersum L. exposed to phenanthrene. Ecotoxicology 19, 1102–1110 (2010). https://doi.org/10.1007/s10646-010-0492-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-010-0492-1

Keywords

Navigation