Skip to main content
Log in

Cadmium accumulation, metallothionein and glutathione levels, and histopathological changes in the kidneys and liver of magpie (Pica pica) from a zinc smelter area

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The objective of this study was to examine a relationship between cadmium (Cd) accumulation and histopathological changes in the kidneys and liver of magpies (Pica pica) from a zinc smelter area. The concentrations of metallothionein (MT) and glutathione (GSH) that are linked to a protective effect against Cd toxicity were also determined. There was a positive correlation between the concentration of Cd (2.2–17.9 μg/g) and histopathological changes (interstitial inflammation and tubular cell degeneration) in the kidneys (R s = 0.87, P = 0.0000). The renal Cd also positively correlated with apoptosis (R s = 0.72, P = 0.0005) but the metal did not affect lipid peroxidation. Notably, the average concentration of Cd in the kidneys exceeded MT capacity by about 7 μg/g which is thought to produce renal injury. Importantly, GSH level in the kidneys of magpies from the polluted area dropped to 38% of that observed in the reference birds, probably potentiating Cd toxicity. On the contrary, the liver accumulation of Cd was relatively small (0.88–3.38 μg/g), the hepatic MT capacity exceeded the total concentration of Cd and no association between the hepatic Cd and histopathology was found despite the fact that GSH level was only half that observed in the reference birds. The data suggest that Cd intoxication may be responsible for histopathological changes occurring in the kidneys of free-ranging magpies and that the pathology may be associated with inappropriate amount of renal MT and GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almazan G, Liu HN, Khorchid A, Sundararajan S, Martinez-Bermudez AK, Chemtob S (2000) Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic Biol Med 29:858–869. doi:10.1016/S0891-5849(00)00384-1

    Article  CAS  Google Scholar 

  • Beiglbock C, Steineck T, Tataruch F, Ruf T (2002) Environmental cadmium induces histopathological changes in kidneys of roe deer. Environ Toxicol Chem 21:1811–1816

    Article  CAS  Google Scholar 

  • Birkhead TR, Clarkson K, Reynolds MD, Koenig WD (1992) Copulation and mate guarding in the yellow-billed magpie Pica nuttalli and a comparison with the black-billed magpie P. pica. Behaviour 121:110–130

    Article  Google Scholar 

  • Cannino G, Ferrugia E, Luparello C, Rinaldi AM (2009) Cadmium and mitochondria. Mitochondrion 9:377–384. doi:10.1016/j.mito.2009.08.009

    Article  CAS  Google Scholar 

  • Chan HM, Cherian MG (1992) Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicology 72:281–290. doi:10.1016/0300-483X(92)90179-I

    Article  CAS  Google Scholar 

  • Congiu L, Chicca M, Pilastro A, Turchetto M, Tallandini L (2000) Effects of chronic dietary cadmium on hepatic glutathione levels and glutathione peroxidase activity in starlings (Sturnus vulgaris). Arch Environ Contam Toxicol 38:357–361. doi:10.1007/S002449910047

    Article  CAS  Google Scholar 

  • Damek-Poprawa M, Sawicka-Kapusta K (2003) Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology 186:1–10. doi:10.1016/S0300-483X(02)00595-4

    Article  CAS  Google Scholar 

  • Damek-Poprawa M, Sawicka-Kapusta K (2004) Histopathological changes in the liver, kidney, and testes of bank voles environmentally exposed to heavy metal emissions from the steelworks and zinc smelter in Poland. Environ Res 96:72–78. doi:10.1016/j.envres.2004.02.003

    Article  CAS  Google Scholar 

  • Day FA, Panemangalore M, Brady FD (1981) In vivo and ex vivo effects of copper on rat liver metallothionein. Proc Soc Exp Biol Med 168:306–310

    CAS  Google Scholar 

  • Dmowski K (1997) Biomonitoring with the use of magpie Pica pica feathers: heavy metal pollution in the vicinity of zinc smelters and national parks in Poland. Acta Ornithol 32:15–23

    Google Scholar 

  • Elliott JE, Scheuhammer AM, Leighton FA, Pearce PA (1992) Heavy metal and metallothionein concentrations in Atlantic Canadian seabirds. Arch Environ Contam Toxicol 22:63–73

    Article  CAS  Google Scholar 

  • Goering PL, Waalkes MP, Klaassen CD (1995) Toxicology of cadmium. In: Goyer RA, Cherian MG (eds) Toxicology of metals: biochemical aspects. Springer, New York, pp 189–213

    Google Scholar 

  • Goyer RA, Miller CR, Zhu S-Y, Victery W (1989) Non-metallothionein-bound cadmium in the pathogenesis of cadmium nephrotoxicity in the rat. Toxicol Appl Pharmacol 101:232–244. doi:10.1016/0041-008X(89)90272-X

    Article  CAS  Google Scholar 

  • Groten JP, Koeman JH, van-Nesselrooij JH, Luten JB, Feutener-van Vlissingen JM, Steinhuis WS, van Bladeren PJ (1994) Comparison of renal toxicity after long-term oral administration of cadmium chloride and cadmium-metallothionein in rats. Fundam Appl Toxicol 23:544–552. doi:10.1006/foat.1994.1139

    Article  CAS  Google Scholar 

  • Habeebu SS, Liu J, Liu Y, Klaassen CD (2000) Metallothionein-null mice are more sensitive than wild-type mice to liver injury induced by repeated exposure to cadmium. Toxicol Sci 55:223–232

    Article  CAS  Google Scholar 

  • Kang YJ, Euger MD (1987) Effect of cellular glutathione depletion on cadmium-induced cytotoxicity in human lung carcinoma cells. Cell Biol Toxicol 3:347–360

    Article  CAS  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294. doi:10.1146/annurev.pharmtox.39.1.267

    Article  CAS  Google Scholar 

  • Larison JR, Likens GE, Fitzpatrick JW, Crock JG (2000) Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature 406:181–183. doi:10.1038/35018068

    Article  CAS  Google Scholar 

  • Leffler PE, Nyholm NE (1996) Nephrotoxic effects in free-living bank voles in a heavy metal polluted environment. Ambio 6:417–420

    Google Scholar 

  • Lehman LD, Klaassen CD (1986) Dosage-dependent disposition of cadmium administered orally to rats. Toxicol Appl Pharmacol 84:159–167

    Article  CAS  Google Scholar 

  • Liu J, Habeebu SS, Liu Y, Klaassen CD (1998a) Acute CdMT injection is not a good model to study chronic Cd nephropathy: comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats. Toxicol Appl Pharmacol 153:48–58. doi:10.1006/taap.1998.8506

    Article  CAS  Google Scholar 

  • Liu J, Liu Y, Habeebu SS, Klaassen CD (1998b) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203. doi:10.1006/toxs.1998.2541

    CAS  Google Scholar 

  • Maracine M, Segner H (1998) Cytotoxicity of metals in isolated fish cells: importance of the cellular glutathione status. Comp Biochem Physiol A 120:83–88. doi:10.1016/S1095-6433(98)10013-2

    Article  Google Scholar 

  • Miranda CL, Henderson MC, Reed RL, Schmitz JA, Buhler DR (1982) Protective action of zinc against pyrrolizidine alkaloid-induced hepatotoxicity in rats. J Toxicol Environ Health 9:359–366

    Article  CAS  Google Scholar 

  • Nicholson JK, Kendall MD, Osborn D (1983) Cadmium and mercury nephrotoxicity. Nature 304:633–635

    Article  CAS  Google Scholar 

  • Nigam D, Shukla GS, Agarwal AK (1999) Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney. Toxicol Lett 106:151–157. doi:10.1016/S0378-4274(99)00059-4

    Article  CAS  Google Scholar 

  • Nomiyama K, Nomiyama H (1998) Cadmium-induced renal dysfunction: new mechanism, treatment and prevention. J Trace Elem Exp Med 11:275–288. doi:10.1002/(SICI)1520-670X(1998)11:2/3<275:AID-JTRA16>3.0.C0;2-0

    Article  CAS  Google Scholar 

  • Nordberg M, Nordberg GF (2000) Toxicological aspects of metallothionein. Cell Mol Biol 46:451–463

    CAS  Google Scholar 

  • Nzengue Y, Steiman R, Garrel C, Lefebvre E, Guirand P (2008) Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium. Toxicology 243:193–206. doi:1016/j.tox.2007.10.005

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Pereira R, Pereira ML, Riberio R, Goncalves F (2006) Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environ Pollut 139:561–575. doi:10.1016/j.envpol.2005.04.038

    Article  CAS  Google Scholar 

  • Pulido MD, Parrish AR (2003) Metal-induced apoptosis: mechanisms. Mut Res 533:227–241. doi:10.1016/j.mrfmmm.2003.07.015

    CAS  Google Scholar 

  • Qu W, Diwan BA, Liu J, Goyer RA, Dawson T, Horton JL, Cherian MG, Waalkes MP (2002) The metallothionein-null phenotype is associated with heightened sensitivity to lead toxicity and an inability to form inclusion bodies. Am J Pathol 160:1047–1056

    CAS  Google Scholar 

  • Rush GH, Gorski JR, Ripple MG, Sowinski J, Bugelski P, Hewitt WR (1985) Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol Appl Pharmacol 78:473–483

    Article  CAS  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83. doi:10.1016/S0378-4274(02)00381-8

    Article  CAS  Google Scholar 

  • Shaikh ZA, Vu TT, Zaman K (1999) Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol 154:253–256. doi:10.1006/taap.1998.8586

    Article  Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defense against cadmium toxicity. FASEB J 1:220–223

    CAS  Google Scholar 

  • Sogawa N, Onodera K, Sogawa CA, Mukubo Y, Fukuoka H, Oda N, Fusuta H (2001) Bisphenol A enhances cadmium toxicity through estrogen receptor. Meth Find Exp Clin Pharmacol 23:395–399

    Article  CAS  Google Scholar 

  • Stacey NH, Cantilena LR, Klaassen CD (1980) Cadmium toxicity and lipid peroxidation in isolated rat hepatocytes. Toxicol Appl Pharmacol 53:470–480

    Article  CAS  Google Scholar 

  • Tanimoto A, Hamada T, Koide O (1993) Cell death and regeneration of renal proximal tubular cells in rat with subchronic cadmium intoxication. Toxicol Pathol 21:341–352

    Article  CAS  Google Scholar 

  • Thevenod F, Friedmann JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cell induced degradation of Na+/K+-ATPase through proteosomal and endo-lysosomal proteolytic pathways. FASEB J 13:1751–1761

    CAS  Google Scholar 

  • Tietze F (1969) Enzymatic method for the quantitative determination of nanogram amounts of total and oxidized glutathione: application to mammalian blood and other tissue. Anal Biochem 27:502–522

    Article  CAS  Google Scholar 

  • van den Hurk P, Faisal M, Roberts MH (2000) Interactive effects of cadmium and benzo(a)pyrene on metallothionein induction in mummichog (Fundulus heteroclitus). Mar Environ Res 50:83–87. doi:10.1016/S0141-1136(00)00098-2

    Article  Google Scholar 

  • Vanparys C, Dauwe T, van Campenhout K, Bervoets L, de Coen W, Blust R, Eens M (2008) Metallothioneins (MTs) and δ-aminolevulinic acid dehydratase (ALAd) as biomarkers of metal pollution in great tits (Parus major) along a pollution gradient. Sci Tot Environ 401:184–193. doi:10.1016/j.scitotenv.2008.04.009

    Article  CAS  Google Scholar 

  • Voehringer DW (1999) BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radic Biol Med 27:945–950. doi:10.1016/S0891-5849(99)00174-4

    Article  CAS  Google Scholar 

  • Wang L, Cao J, Chen D, Liu X, Lu H, Liu Z (2009) Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium. Biol Trace Elem Res 127:53–68. doi:10.1007/S12011-008-8223-7

    Article  CAS  Google Scholar 

  • Włostowski T, Krasowska A, Łaszkiewicz-Tiszczenko B (2000) Dietary cadmium induces histopathological changes despite a sufficient metallothionein level in liver and kidneys of the bank vole (Clethrionomys glareolus). Comp Biochem Physiol C 126:21–28. doi:10.1016/S0742-8413(00)00089-X

    Google Scholar 

  • Włostowski T, Bonda E, Krasowska A (2004) Photoperiod affects hepatic and renal cadmium accumulation, metallothionein induction, and cadmium toxicity in the wild bank vole (Clethrionomys glareolus). Ecotoxicol Environ Saf 58:29–36. doi:10.1016/S0147-6513(03)00109-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Włostowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Włostowski, T., Dmowski, K. & Bonda-Ostaszewska, E. Cadmium accumulation, metallothionein and glutathione levels, and histopathological changes in the kidneys and liver of magpie (Pica pica) from a zinc smelter area. Ecotoxicology 19, 1066–1073 (2010). https://doi.org/10.1007/s10646-010-0488-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-010-0488-x

Keywords

Navigation