Skip to main content
Log in

Suitability of Daphnia similis as an alternative organism in ecotoxicological tests: implications for metal toxicity

  • Technical Note
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The acute toxicity of metals to Daphnia similis was determined and compared to other daphnid species to evaluate the suitability of this organism in ecotoxicology bioassays. To verify the performance D. similis in toxicity tests, we also investigated the effect of Pseudokirchneriella subcapitata at 1 × 105 and 1 × 106 cells ml−1 on Cd and Cr acute toxicity to the cladoceran. Daphnid neonates were exposed to a range of chromium and cadmium concentrations in the absence and presence of the algal cells. Metal speciation calculations using MINEQL+ showed that total dissolved metal concentrations in zooplankton culture corresponded to 96.2% free Cd and 100% free Cr concentrations. Initial total dissolved metal concentrations were used for 48 h-LC50 determination. LC50 for D. similis was 5.15 × 10−7 mol l−1 dissolved Cd without algal cells, whereas with 1 × 105 cells ml−1, it was significantly higher (7.15 × 10−7 mol l−1 dissolved Cd). For Cr, the 48 h-LC50 value of 9.17 × 10−7 mol l−1 obtained for the cladoceran in tests with 1 × 106 cells ml−1 of P. subcapitata was also significantly higher than that obtained in tests without algal cells (5.28 × 10−7 mol l−1 dissolved Cr). The presence of algal cells reduced the toxicity of metals to D. similis, as observed in other studies that investigated the effects of food on metal toxicity to standard cladocerans. Comparing our results to those of literature, we observed that D. similis is as sensitive to metals as other standardized Daphnia species and may serve as a potential test species in ecotoxicological evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • American Public Health Association, American Water Work Association, Water Control Federation (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association/American Water Work Association/Water Control Federation, New York

  • American Society for Testing and Materials (1992) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Designation E 729-88a. Annual book of ASTM standards, vol 11.04, pp 799–811

  • Associação Brasileira de Normas Técnicas (2004) Ecotoxicologia aquática—Toxicidade aguda—Método de ensaio com Daphnia ssp (Cladocera, Crustacea). ABNT NBR 12713. Rio de Janeiro, 21 pp

  • Association Française de Normalisation (1980) Norme experimental. T90-304. Essais dês eause. Determination de L’inhibition de Scenedesmus subspicatus par une substance

  • Ayres M, Ayres M Jr, Ayres DL, Santos ASS (2005) BioEstat 4.0: aplicações estatística nas áreas das Ciências Bio-Médicas. Sociedade Civil Mamirauá, MCT, Impressa Oficial do Estado do Pará

  • Barata C, Baird DJ, Markich SJ (1998) Influence of genetic and environmental factors on the tolerance to Daphnia magna Straus to essential and non-essential metals. Aquat Toxicol 42:115–137. doi:10.1016/S0166-445X(98)00039-3

    Article  CAS  Google Scholar 

  • Bianchini A, Bowles KC, Brauner CJ, Gorsuch JW, Kramer JR, Wood CM (2002) Evaluation of the effect of reactive sulfide on the acute toxicity of silver(I) to Daphnia magna. Part II: toxicity results. Environ Toxicol Chem 21:1294–1300. doi:10.1897/1551-5028(2002)021<1294:EOTEOR>2.0.CO;2

    CAS  Google Scholar 

  • Bossuyt BTA, Escobar YR, Janssen CR (2005) Multigeneration acclimation of Daphnia magna Straus to different bioavailable copper concentrations. Ecotoxicol Environ Saf 61:327–336. doi:10.1016/j.ecoenv.2005.03.004

    Article  CAS  Google Scholar 

  • Buratini SV, Bertoletti E, Zagatto PA (2004) Evaluation of Daphnia similis as a test species in ecotoxicological assays. Bull Environ Contam Toxicol 73:878–882. doi:10.1007/s00128-004-0508-8

    Article  CAS  Google Scholar 

  • Chapman PM, Wang FY, Janssen CR, Goulet RR, Kamunde CN (2003) Conducting ecological risk assessments of inorganic metals and metalloids: current status. Hum Ecol Risk Assess 9:641–697. doi:10.1080/713610004

    Article  CAS  Google Scholar 

  • De Schamphelaere KAC, Janssen CR (2002) A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ Sci Technol 36:48–54. doi:10.1021/es049256l

    Article  CAS  Google Scholar 

  • Diamantino TC, Guilhermino L, Almeida E, Soares AMVM (2000) Toxicity of sodium molybdate and sodium dichromate to Daphnia magna Straus evaluated in acute, chronic and acetylcholinesterase inhibition tests. Ecotoxicol Environ Saf 45:235–259. doi:10.1006/eesa.1999.1889

    Article  CAS  Google Scholar 

  • Do Hong LC, Slooten KBV, Tarradellas J (2004) Tropical ecotoxicity testing with Ceriodaphnia cornuta. Environ Toxicol 19:497–504. doi:10.1002/tox.20055

    Article  CAS  Google Scholar 

  • Dorn PB, Rodgers JH Jr, Jop KM, Raia JC, Dickson KL (1987) Hexavalent chromium as a reference toxicant in effluent toxicity tests. Environ Toxicol Chem 6:435–444. doi:10.1897/1552-8618(1987)6[435:HCAART]2.0.CO;2

    Article  CAS  Google Scholar 

  • Fargasová A (1994) Toxicity of metals on Daphnia magna and Tubifex tubifex. Ecotoxicol Environ Saf 27:210–213. doi:10.1006/eesa.1994.1017

    Article  Google Scholar 

  • Fernando CH, Paggi JC, Rajapaksa R (1987) Daphnia in tropical lowlands. In: Peters RH, de Bernardi R (ed) Daphnia. Mem Ist Ital Idrobiol, vol 45, pp 107–141

  • Hamilton M, Russo RC, Thurston RV (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719. doi:10.1021/es60130a004

    Article  CAS  Google Scholar 

  • Hauri JF, Horne AJ (2004) Reduction in labile copper in the 7-day Ceriodaphnia dubia toxicity test due to the interaction with zooplankton food. Chemosphere 56:717–723. doi:10.1016/j.chemosphere.2004.04.014

    Article  CAS  Google Scholar 

  • Hebert PDN, Finston TL (1993) A taxonomic reevaluation of North American Daphnia (Crustacea: Cladocera). I. The D. similis complex. Can J Zool 71:908–925. doi:10.1139/z93-119

    Article  Google Scholar 

  • Kolts JM, Boese CJ, Meyer JS (2006) Acute toxicity of copper and silver to Ceriodaphnia dubia in the presence of food. Environ Toxicol Chem 25:1831–1835. doi:10.1897/05-501R.1

    Article  CAS  Google Scholar 

  • Kozlova T, Wood CM, McGeer JC (2009) The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model. Aquat Toxicol 91:221–228. doi:10.1016/j.aquatox.2008.11.005

    Article  CAS  Google Scholar 

  • Kungolos A, Aoyama I (1993) Interaction effect, food effect, and bioaccumulation of cadmium and chromium for the system Daphnia magnaChlorella ellipsoidea. Environ Toxicol Water Qual 8:351–369. doi:10.1002/tox.2530080402

    Article  CAS  Google Scholar 

  • Martínez-Jerónimo F, Martínez-Jerónimo L, Espinosa-Chávez F (2006) Effect of culture conditions and mother’s age on the sensitivity of Daphnia magna Straus 1820 (Cladocera) neonates to hexavalent chromium. Ecotoxicology 15:259–266. doi:10.1007/s10646-006-0057-5

    Article  CAS  Google Scholar 

  • Martínez-Jerónimo F, Cruz-Cisneros JL, García-Hernández L (2008) A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments. Ecotoxicol Environ Saf 71:26–31. doi:10.1016/j.ecoenv.2008.05.00

    Article  CAS  Google Scholar 

  • Miller JC, Miller JN (1994) Statistic for analytic chemistry. Ellis Horwood, Chichester

    Google Scholar 

  • MINEQL+ (2009) Chemical equilibrium modeling system for Windows, version 4.61. Environmental Research Software, Hollowell

  • Mount DI, Norberg TJ (1984) A seven life-cycle cladoceran toxicity test. Environ Toxicol Chem 3:425–434. doi:10.1897/1552-8618(1984)3[425:ASLCCT]2.0.CO;2

    Article  CAS  Google Scholar 

  • Muyssen BTA, Janssen CR (2004) Multi-generation cadmium acclimation and tolerance in Daphnia magna Straus. Environ Pollut 130:309–316. doi:10.1016/j.envpol.2004.01.003

    Article  CAS  Google Scholar 

  • Nandini S, Picazo-Paez EA, Sarma SSS (2007) The combined effects of heavy metals (copper and zinc), temperature and food (Chlorella vulgaris) level on the demographic characters of Moina macrocopa (Crustacea: Cladocera). J Environ Sci Health A 42:1433–1442. doi:10.1080/10934520701480789

    Article  CAS  Google Scholar 

  • Pedrozo CS, Bohrer MBC (2003) Effects of culture medium and food quantity on the growth, fecundity and longevity of the cladoceran Daphnia similis Claus. Acta Limnol Bras 15:43–49

    Google Scholar 

  • Penttinen A, Kostamo A, Kukkonen JVK (1998) Combined effects of dissolved organic material and water hardness on toxicity of cadmium to Daphnia magna. Environ Toxicol Chem 17:2498–2503. doi:10.1897/1551-5028(1998)017<2498:CEODOM>2.3.CO;2

    CAS  Google Scholar 

  • Rodgher S, Espíndola ELG (2008) Effects of interactions between algal densities and cadmium on Ceriodaphnia dubia fecundity and survival. Ecotoxicol Environ Saf 71:765–773. doi:10.1016/j.ecoenv.2007.08.12

    Article  CAS  Google Scholar 

  • Schwartz ML, Vigneault B (2007) Development and validation of a chronic copper biotic ligand model for Ceriodaphnia dubia. Aquat Toxicol 84:247–254. doi:10.1016/j.aquatox.2007.01.011

    Article  CAS  Google Scholar 

  • Sofyan A, Shaw JR, Birge WJ (2006) Metal transfer from algae to cladocerans and the relative importance of dietary metal exposure. Environ Toxicol Chem 25:1034–1041. doi:10.1897/05-227R.1

    Article  CAS  Google Scholar 

  • Taylor G, Baird DJ, Soares AMVM (1998) Surface binding contaminants by algae: consequences for lethal toxicity and feeding to Daphnia magna Straus. Environ Toxicol Chem 17:412–419. doi:10.1897/1551-5028(1998)017<0412:SBOCBA>2.3.CO;2

    CAS  Google Scholar 

  • Tsui MTK, Wang WX (2006) Acute toxicity of mercury to Daphnia magna under different conditions. Environ Sci Technol 40:4025–4030. doi:10.1021/es052377g

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 4th edn, EPA/600/4-90-02F. Office of Research and Development U.S. Environmental Protection Agency, Cincinnati

  • van Dam R, Hogan A, Harford S, Markich S (2008) Toxicity and metal speciation characterisation of waste water from an abandoned gold mine in tropical northern Australia. Chemosphere 73:305–313. doi:10.1016/j.chemosphere.2008.06.011

    Article  CAS  Google Scholar 

  • Von Der Ohe PC, Liess M (2004) Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environ Toxicol Chem 23:150–156. doi:10.1897/02-577

    Article  Google Scholar 

  • Wong NC, Wong MH, Shiu KK, Qiu JW (2006) Dependency of copper toxicity to polychaete larvae on algal concentration. Aquat Toxicol 77:117–125. doi:10.1016/j.aquatox.2005.11.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Research Council (CNPq: Process 140156/2002-0) and the São Paulo State Research Support Foundation (FAPESP: Process 10417/2002) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzelei Rodgher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodgher, S., Espíndola, E.L.G. & Lombardi, A.T. Suitability of Daphnia similis as an alternative organism in ecotoxicological tests: implications for metal toxicity. Ecotoxicology 19, 1027–1033 (2010). https://doi.org/10.1007/s10646-010-0484-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-010-0484-1

Keywords

Navigation