Skip to main content
Log in

Growth and antioxidant response in Hydrocharis dubis (Bl.) Backer exposed to linear alkylbenzene sulfonate

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

A two-week exposure experiment was designed to investigate the toxicity of linear alkylbenzene sulfonate (LAS) on the aquatic plant Hydrocharis dubis (Bl.) Backer, focusing on growth, photosynthetic pigments and the activities of antioxidant enzymes. No significant differences were observed in the growth parameters of H. dubis when H. dubis was exposed to lower LAS doses (≤10 mg l−1). However, lower LAS doses remarkably promote the dry weight accumulation of H. dubis. Higher doses of LAS (>10 mg l−1) resulted in significant decreases in all growth parameters of H. dubis. No significant effect on pigment contents was observed at up to 50 mg l−1 LAS, beyond which pigment contents declined gradually. Malondialdehyde (MDA) content did not show obvious differences when H. dubis plants were exposed to ≤50 mg l−1 LAS. Peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activities showed a concentration-dependent increase up to LAS concentrations of 0.1–10 mg l−1, followed by a clear decrease. The results of this study suggest that LAS significantly inhibited the growth and physiology of H. dubis when the dose of LAS exceeded 10 mg l−1 . Therefore, LAS at current environmental concentrations dose not appear to cause evident phytotoxic effects on H. dubis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alscher RG, Erturk N, Health LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Cavalli L, Clerici R, Radici P, Valtorta L (1999) Update on LAB/LAS. Tenside Surf Det 36:254–258

    CAS  Google Scholar 

  • Fairchild JF, Dwyer JF, La Point TW (1993) Evaluation of a laboratory-generated NOEC for linear alkylbenzene sulfonate in outdoor experimental streams. Environ Toxicol Chem 12:1763–1775

    CAS  Google Scholar 

  • Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264:7761–7764

    CAS  Google Scholar 

  • Garcia MT, Campos E, Ribosa I, Latorre A, Sanchez-Leal J (2005) Anaerobic digestion of linear alkyl benzene sulfonates: biodegradation kinetics and metabolite analysis. Chemosphere 60:1636–1643

    Article  CAS  Google Scholar 

  • Garrido-Perez MC, Perales-VargasMachuca JA, Nebot-Sanz E, Sales-Marquez D (2008) Effect of the test media and toxicity of LAS on the growth of Isochrysis galbana. Ecotoxicology 17:738–746

    Article  CAS  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ 347:1–32

    Google Scholar 

  • Hodges G, Roberts DW, Marshall SJ, Dearden JC (2006) The aquatic toxicity of anionic surfactants to Daphnia magna—a comparative QSAR study of linear alkylbenzene sulphonates and ester sulphonates. Chemosphere 63:1443–1450

    Article  CAS  Google Scholar 

  • International Programme on Chemical Safety (1996) Linear alkylbenzene sulfonates and related compounds, environmental health criteria monographs (EHCs) 169, WHO library cataloguing in publication data. World Health Organization, Geneva

    Google Scholar 

  • Jackson LJ (1998) Paradigms of metal accumulation in rooted aquatic vascular plants. Sci Total Environ 219:223–231

    Article  CAS  Google Scholar 

  • Jin JH, Ding ZR (1981) Methods of plants biochemistry analysis. Chinese Science Press, Beijing, China

    Google Scholar 

  • Jonsson CM, Paraiba LC, Aoyama H (2009) Metals and linear alkylbenzene sulphonate as inhibitors of the algae Pseudokirchneriella subcapitata acid phosphatase activity. Ecotoxicology 18:610–619

    Article  CAS  Google Scholar 

  • Larson RJ, Woltering DM (1995) Linear alkylbenzene sulfonate (LAS). In: Rand GM (ed) Fundamentals in aquatic toxicology. Taylor & Francis, London, pp 859–882

    Google Scholar 

  • Lewis MA (1991) Chronic and sublethal toxicities of surfactants to aquatic animals: a review and risk assessment. Water Res 25:101–113

    Article  CAS  Google Scholar 

  • Lewis MA (1992) The effects of mixture and other environmental modifying factors on the toxicities of surfactants to freshwater and marine life. Water Res 26:1013–1023

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvent. Biochem Soc Trans 11:1982–1983

    Google Scholar 

  • Liu HY, Lu SQ, Liao BH, Zhou PH (2003) Isolation and identification of bacterial strains for surfactant degradation. Acta Scientiae Circumstantiae 23:512–516

    CAS  Google Scholar 

  • Liu HY, Liao BH, Zhou PH, Yu PZ (2004) Toxicity of linear alkylbenzene sulfonate and alkylethoxylate to aquatic plants. Bull Enviro Contam Toxicol 72:866–872

    CAS  Google Scholar 

  • Lurling M (2006) Effects of a surfactant (FFD-6) on Scenedesmus morphology and growth under different nutrient conditions. Chemosphere 62:1351–1358

    Article  CAS  Google Scholar 

  • Maenpaa K, Kukkonen JVK (2006) Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegates (Oligochaeta) and Chironomus riparius (Insecta). Aquat Toxicol 77:329–338

    Article  CAS  Google Scholar 

  • McAvoy DC, Eckhoff WS, Rapaport RA (1993) Fate of linear alkylbenzene sulfonate in the environment. Environ Toxicol Chem 12:979–987

    Article  Google Scholar 

  • Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, Lekka M (2006) Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 62:275–284

    Article  CAS  Google Scholar 

  • Rapaport RA, Eckhoff WS (1990) Monitoring linear alkylbenzene sulfonate in the environment: 1973–1986. Environ Toxicol Chem 9:1245–1257

    CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyonthsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietimum L.). Chemosphere 60:97–104

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium induces changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  Google Scholar 

  • Sandermann H Jr (1992) Plants metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    Article  CAS  Google Scholar 

  • Sanz JL, Culubret E, de Ferrer J, Moreno A, Berna JL (2003) Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors. Biodegradation 14:57–64

    Article  CAS  Google Scholar 

  • Sharma SS, Gaur JP (1995) Potential of Lemna polyrrhiza for removal of heavy metals. Ecol Eng 4:37–43

    Article  Google Scholar 

  • Singh J, Chawla G, Naqvi SHN, Viswanathan PN (1994) Combined effects of cadmium and linear alkylbenzene sulfonate on Lemna minor L. Ecotoxicology 3:59–67

    Article  CAS  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  CAS  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415

    Article  CAS  Google Scholar 

  • Tabor CF, Barber LB (1996) Fate of linear alkylbenzene sulfonate in the Mississippi river. Environ Sci Technol 30:161–171

    Article  CAS  Google Scholar 

  • Temara A, Carr G, Webb S, Versteeg D, Feijtel T (2001) Marine risk assessment: linear alkylbenzene sulfonates (LAS) in the North Sea. Mar Pollut Bull 42:635–642

    Article  CAS  Google Scholar 

  • Tolls J, deGraaf I, Thijssen MATC, Haller M, Sijm DTHM (1997) Bioconcentration of LAS: experimental determination and extrapolation to environmental mixtures. Environ Sci Technol 31:3426–3431

    Article  CAS  Google Scholar 

  • Tsang E, Bowler C, Herouart D, Villarroel R, Genetello C, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792

    Article  CAS  Google Scholar 

  • Van den Plassche EJ, de Bruin JHM, Feijtel TCJ (1997) Risk assessment of four major surfactant groups in the Netherlands. Tenside Surfact Det 34:242–249

    Google Scholar 

  • Van den Plassche EJ, de Bruin JHM, Stephenson RR, Marshall SJ, Feijtel TCJ, Belanger SE (1999) Predicted no-effect concentrationa and risk characterization of four surfactants: linear alkylbenzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and soap. Environ Toxicol Chem 18:2653–2663

    Article  Google Scholar 

  • Vandepitte V, Feijtel TCJ (2000) Risk assessment: a case study on surfactants. Tenside Surfact Det 37:35–40

    CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Versteeg DJ, Rawlings JM (2003) Bioconcentration and toxicity of dodecylbenzene sulfonate (C12LAS) to aquatic organisms exposed in experimental streams. Arch Environ Contam Toxicol 44:237–246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation of China (No. 30670206, No. 30970303 and No. 30200022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Yu, D., Li, J. et al. Growth and antioxidant response in Hydrocharis dubis (Bl.) Backer exposed to linear alkylbenzene sulfonate. Ecotoxicology 19, 761–769 (2010). https://doi.org/10.1007/s10646-009-0453-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0453-8

Keywords

Navigation