Skip to main content
Log in

New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Argentina is the second largest world producer of soybeans (after the USA) and along with the increase in planted surface and production in the country, glyphosate consumption has grown in the same way. We investigated the effects of Roundup® (glyphosate formulation) on the periphyton colonization. The experiment was carried out over 42 days in ten outdoor mesocosms of different typology: “clear” waters with aquatic macrophytes and/or metaphyton and “turbid” waters with great occurrence of phytoplankton or suspended inorganic matter. The herbicide was added at 8 mg L−1 of the active ingredient (glyphosate) in five mesocosms while five were left as controls (without Roundup® addition). The estimate of the dissipation rate (k) of glyphosate showed a half-life value of 4.2 days. Total phosphorus significantly increased in treated mesocosms due to Roundup® degradation what favored eutrophication process. Roundup® produced a clear delay in periphytic colonization in treated mesocosms and values of the periphytic mass variables (dry weight, ash-free dry weight and chlorophyll a) were always higher in control mesocosms. Despite the mortality of algae, mainly diatoms, cyanobacteria was favored in treated mesocosms. It was observed that glyphosate produced a long term shift in the typology of mesocosms, “clear” turning to “turbid”, which is consistent with the regional trend in shallow lakes in the Pampa plain of Argentina. Based on our findings it is clear that agricultural practices that involve the use of herbicides such as Roundup® affect non-target organisms and the water quality, modifying the structure and functionality of freshwater ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achiorno CL, de Villalobos C, Ferrari L (2008) Toxicity of the herbicide glyphosate to Chordodes nobilii (Gordiida, Nematomorpha). Chemosphere 71:1816–1822. doi:10.1016/j.chemosphere.2008.02.001

    Article  CAS  Google Scholar 

  • Allende L, Tell G, Zagarese H, Torremorell A, Pérez G, Bustingorry J, Escaray R, Izaguirre I (2009) Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624:45–60. doi:10.1007/s10750-008-9665-9

    Article  CAS  Google Scholar 

  • American Public Health Association (2005) Standard methods for the examination of water and wastewaters, 21st edn. Centennial Edition. APHA, American Water Works Association, Water Environmental Federation, Washington, DC

    Google Scholar 

  • Amrhein N, Deus B, Gehrke P, Steinrücken HC (1980) The site of inhibition of the shikimate pathway by ghyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol 66:830–834. doi:10.1104/pp.66.5.830

    Article  CAS  Google Scholar 

  • Asselborn VM, Zalocar de Domitrovic Y (1998) Efectos del herbicida glifosato sobre el crecimiento del alga verde Ankistrodesmus gracilis (Chlorophyta). Rev Bras Toxicol 11:61–65

    CAS  Google Scholar 

  • Austin AP, Harris GE, Lucey WP (1991) Impact of an organophosphate herbicide (Glyphosate®) on periphyton communities developed in experimental streams. Bull Environ Contam Toxicol 47:29–35. doi:10.1007/BF01689449

    Article  CAS  Google Scholar 

  • Barja BC, dos Santos Afonso M (2005) Aminomethylphosphonic Acid and Glyphosate adsorption onto Goethite: A comparative Study. Environ Sci Technol 39:585–592. doi:10.1021/es035055q

    Article  CAS  Google Scholar 

  • CASAFE (2009). Informe de Mercado Argentino de Fitosanitarios, año 2007. Cámara de Sanidad Agropecuaria y Fertilizantes. 61 pp

  • Castro JV Jr, Peralba MCR, Ayub MAZ (2007) Biodegradation of the herbicide glyphosate by filamentous fungi in platform shaker and batch bioreactor. J Environ Sci Health, Part B 42:883–886. doi:10.1080/03601230701623290

    Article  CAS  Google Scholar 

  • Cavalcante DGSM, Martinez CBR, Sofia SH (2008) Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutat Res Genet Toxicol Environ Mutagen 655:41–46. doi:10.1016/j.mrgentox.2008.06.010

    Article  CAS  Google Scholar 

  • Costa MJ, Monteiro DA, Oliveira-Neto AL, Rantin FT, Kalinin AL (2008) Oxidative stress biomarkers and heart function in bullfrog tadpoles exposed to Roundup Original®. Ecotoxicology 17:153–163. doi:10.1007/s10646-007-0178-5

    Article  CAS  Google Scholar 

  • Dukatz F, Ferrari R, Canziani G (2006) Evaluación de sistemas lacunares bonaerenses mediante imágenes Landsat TM. Biol Acuát 22:95–101

    Google Scholar 

  • Edwards WM, Triplett GB Jr, Kramer RM (1980) A watershed study of glyphosate transport in Runoff. J Environ Qual 9:661–665

    Article  CAS  Google Scholar 

  • Feng JC, Thompson DG, Reynolds P (1990) Fate of glyphosate in a Canadian forest watershed. 1. Aquatic residues and off-target deposit assessment. J Agric Food Chem 38:1110–1118. doi:10.1021/jf00094a045

    Article  CAS  Google Scholar 

  • Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49:443–456. doi:10.1093/pcp/pcn021

    Article  CAS  Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup® herbicide. Rev Environ Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Goldsborough LG, Beck AE (1989) Rapid dissipation of glyphosate in small forest ponds. Arch Environ Contam Toxicol 18:537–544. doi:10.1007/BF01055020

    Article  CAS  Google Scholar 

  • Goldsborough LG, Brown DJ (1988) Effect of glyphosate (Roundup® formulation) on periphytic algal photosynthesis. Bull Environ Contam Toxicol 41:253–260. doi:10.1007/BF01705439

    Article  CAS  Google Scholar 

  • Henry CJ, Higgins KF, Buhl KJ (1994) Acute toxicity and hazard assessment of Rodeo®, X-77 Spreader®, and Chem-Trol® to aquatic invertebrates. Arch Environ Contam Toxicol 27:392–399. doi:10.1007/BF00213176

    Article  CAS  Google Scholar 

  • Holtby LB, Baillie SG (1989) Effects of the herbicide Roundup (glyphosate) on periphyton in carnation creek, British Columbia. In: Proceedings of the carnation creek herbicide workshop, March 1989, pp 224–231

  • Izaguirre I, Vinocur A (1994) Tipology of shallow lakes of the Salado River basin (Argentina), based on phytoplankton communities. Hydrobiologia 277:49–62. doi:10.1007/BF00023985

    Article  Google Scholar 

  • James C (2007) Global status of commercialized Biotech/GM crops: 2007. ISAAA Brief No. 37. ISAAA, Ithaca, NY

    Google Scholar 

  • Kolpin DW, Thurman EM, Lee EA, Meyer MT, Furlong ET, Glassmeyer ST (2006) Urban contributions of glyphosate and its degradate AMPA to streams in the United States. Sci Total Environ 354:191–197. doi:10.1016/j.scitotenv.2005.01.028

    Article  CAS  Google Scholar 

  • Langiano VC, Martinez CBR (2008) Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comp Biochem Physiol, Part C 147:222–231. doi:10.1016/j.cbpc.2007.09.009

    Google Scholar 

  • Laurion I, Lami A, Sommaruga R (2002) Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquat Microb Ecol 26:283–294. doi:10.3354/ame026283

    Article  Google Scholar 

  • Liboriussen L, Jeppesen E (2003) Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshw Biol 48:418–431. doi:10.1046/j.1365-2427.2003.01018.x

    Article  Google Scholar 

  • Lipok J, Owsiak T, Młynarz P, Forlani G, Kafarski P (2007) Phosphorus NMR as a tool to study mineralization of organophosphonates-the ability of Spirulina spp. to degrade glyphosate. Enzyme Microb Technol 41:286–291. doi:10.1016/j.enzmictec.2007.02.004

    Article  CAS  Google Scholar 

  • Liu CM, McLean PA, Sookdeo CC, Cannon FC (1991) Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol 57:1799–1804. doi:0099-2240/91/061799-06$02.00/0

    CAS  Google Scholar 

  • Mann RM, Bidwell JR (1999) The toxicity of glyphosate formulations to four species of Southwestern Australian frogs. Arch Environ Contam Toxicol 36:193–199. doi:10.1007/s002449900460

    Article  CAS  Google Scholar 

  • Mantoura RFC, Llewellyn CA (1983) The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal Chim Acta 151:297–314. doi:10.1016/S0003-2670(00)80092-6

    Article  CAS  Google Scholar 

  • Miles CJ, Wallace LR, Moye HA (1986) Determination of glyphosate herbicide and (aminomethyl) phosphonic acid in natural waters by liquid chromatography using pre-column fluorogenic labeling with 9-fluorenylmethyl chloroformate. J Assoc Off Anal Chem 69:458–461

    CAS  Google Scholar 

  • Mugni H, Jergentz S, Schulz R, Maine A, Bonetto C (2005) Phosphate and nitrogen compounds in streams of Pampean Plain areas under intensive cultivation (Buenos Aires, Argentina). In: Serrano H, Golterman HL (eds) Phosphates in sediments. Backhuys Publishers, The Netherlands, pp 163–170

    Google Scholar 

  • Pérez GL, Torremorell A, Mugni H, Rodríguez P, Vera MS, Do Nascimento M, Allende L, Bustingorry J, Escaray R, Ferraro M, Izaguirre I, Pizarro H, Bonetto C, Morris DP, Zagarese H (2007) Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecol Appl 17:2310–2322. doi:10.1890/07-0499.1

    Article  Google Scholar 

  • Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66. doi:10.1016/j.envpol.2008.01.015

    Article  CAS  Google Scholar 

  • Pessagno RC, Dos Santos Afonso M, Torres Sanchez RM (2005) N-(Phosphonomethyl)glycine interactions with soils. J Argent Chem Soc 93:97–108

    CAS  Google Scholar 

  • Powell HA, Kerby NW, Rowell P (1991) Natural tolerance of cyanobacteria to the herbicide glyphosate. New Phytol 119:421–426. doi:10.1111/j.1469-8137.1991.tb00042.x

    Article  CAS  Google Scholar 

  • Quirós R, Drago E (1999) The environmental state of Argentinean lakes: an overview. Lakes Reserv Res Manag 4:55–64. doi:10.1046/j.1440-1770.1999.00076.x

    Article  Google Scholar 

  • Quirós R, Rosso JJ, Rennella A, Sosnovsky A, Boveri M (2002) Análisis del estado trófico de las lagunas pampeanas (Argentina). Interciencia 27:584–591

    Google Scholar 

  • Relyea RA (2004) Growth and survival of five amphibian species exposed to combinations of pesticides. Environ Toxicol Chem 23:1737–1742. doi:10.1897/03-493

    Article  CAS  Google Scholar 

  • Relyea RA (2005a) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627. doi:10.1890/03-5342

    Article  Google Scholar 

  • Relyea RA (2005b) The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecol Appl 15:1118–1124. doi:10.1890/04-1291

    Article  Google Scholar 

  • Relyea RA (2006) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 16:2027–2034. doi:10.1890/04-1291

    Article  Google Scholar 

  • Relyea RA, Schoeppner NM, Hoverman JT (2005) Pesticides and amphibians: the importance of community context. Ecol Appl 15:1125–1134. doi:10.1890/04-0559

    Article  Google Scholar 

  • Sabater S, Admiral W (2005) Periphyton as biological indicators in managed aquatic ecosystems. In: Azim ME, Verdegem MCJ, van Dam AA, Beveridge MCM (eds) Periphyton. Ecology, exploitation and management. CABI Publishing, London, pp 159–178

    Google Scholar 

  • Sáenz ME, Di Marzio WD, Alberdi JL, Tortorelli MC (1997) Effects of technical grade and a commercial formulation of glyphosate on algal population growth. Bull Environ Contam Toxicol 59:638–644. doi:10.1007/s001289900527

    Article  Google Scholar 

  • Salisbury FB, Ross CW (1994) Fisiología vegetal. Grupo Editorial Iberoamérica, México, DF

    Google Scholar 

  • Schaffer JD, Sebetich MJ (2004) Effects of aquatic herbicides on primary productivity of phytoplankton in the laboratory. Bull Environ Contam Toxicol 72:1032–1037. doi:10.1007/s00128-004-0347-7

    Article  CAS  Google Scholar 

  • Sobrero C, Martin ML, Ronco A (2007) Fitotoxicidad del herbicida Roundup® Max sobre la especie no blanco Lemna gibba en estudios de campo y laboratorio. Hidrobiológica 17:31–39

    Google Scholar 

  • Steeman-Nielsen E (1952) The use of radioactive carbon (14C) for measuring organic production in the sea. J Cons Int l’Explor Mer 18:117–140

    Google Scholar 

  • Struger J, Thompson D, Staznik B, Martin P, McDaniel T, Marvin Ch (2008) Occurrence of glyphosate in surface waters of southern Ontario. Bull Environ Contam Toxicol 80:378–384. doi:10.1007/s00128-008-9373-1

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Trigo EJ, Cap EJ (2006) Diez años de cultivos transgénicos en la agricultura Argentina. ArgenBio, Buenos Aires 53 pp

    Google Scholar 

  • Tsui MTK, Wang WX, Chu LM (2005) Influence of glyphosate and its formulation (Roundup®) on the toxicity and bioavailability of metals to Ceriodaphnia dubia. Environ Pollut 138:59–68. doi:10.1016/j.envpol.2005.02.018

    Article  CAS  Google Scholar 

  • Utermöhl M (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. MIH Verh Int Ver Limnol 9:1–38

    Google Scholar 

  • Vadeboncoeur Y, Steinman A (2002) Periphyton function in lake ecosystems. Sci World 2:1449–1468. doi:10.1100/tsw.2002.294

    Google Scholar 

  • Venrick EL (1978) How many cells to count? In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, pp 167–180

    Google Scholar 

Download references

Acknowledgments

We wish to thank José Bustingorry and Roberto Escaray for their field and laboratory assistance and to two anonymous reviewers for their useful comments on the manuscript. This work was supported by CONICET PIP 5614, Universidad Nacional de General San Martín grant S-05/19 and ANPCyT PICT 01104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydée Pizarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vera, M.S., Lagomarsino, L., Sylvester, M. et al. New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology 19, 710–721 (2010). https://doi.org/10.1007/s10646-009-0446-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0446-7

Keywords

Navigation