Skip to main content
Log in

Vanadium pentoxide effects on stress responses in wine Saccharomyces cerevisiae strain UE-ME3

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Vanadium pentoxide mainly used as catalyst in sulphuric acid, maleic anhydride and ceramics industry, is a pollutant watering redistributed around the environment. Research on biological influence of vanadium pentoxide has gained major importance because it exerts toxic effects on a wide variety of biological systems. In this work we intent to evaluate the effects of vanadium pentoxide ranging from 0 to 2 mM in culture media on a wine wild-type Saccharomyces cerevisiae from Alentejo region of Portugal. Our results show that 2.0 mM vanadium pentoxide in culture medium induced a significant increase of malonaldehyde level and Glutathione peroxidase activity, a slightly increase of Catalase A activity as well as a decrease of wet weight and mitochondrial NADH cit c reductase of S. cerevisiae UE-ME3. Also our results show that cycloheximide prevent cell death when cells grows 30 min in presence of 1.5 mM of vanadium pentoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

V2O5 :

Vanadium pentoxide

MDA:

Malonaldehyde

CAT A:

Catalase peroxisomal

GPx:

Glutathione peroxidase

ROS:

Reactive oxygen species

References

  • Atlas RM (2006) Handbook of microbiological media for the examination of food, 2nd edn. CRC/Taylor & Francis, Boca Raton, p 403

    Google Scholar 

  • Bakker BM, Overkamp KM, Maris AJA, Kotter P, Luttik MAH, Dijken JPD, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  CAS  Google Scholar 

  • Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. South African J Enol Vit 21:27–51

    CAS  Google Scholar 

  • Beers RF, Sizer JW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–138

    CAS  Google Scholar 

  • Bode HP, Friebel C, Fuhrmann GF (1990) Vanadium uptake by yeast cells. Biochim Biophys Acta 1022:163–170

    Article  CAS  Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398

    CAS  Google Scholar 

  • Chaudiere J, Wilhelmsen EC, Tappels AL (1984) Mechanism of selenium-glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans. J Biol Chem 259:1043–1050

    CAS  Google Scholar 

  • Cohen G, Fessl F, Traczyk A, Rytka J, Ruis H (1985) Isolation of the catalase A gene of Saccharomyces cerevisiae by complementation of the ctal mutation. Mol Gen Genet 200:74–79

    Article  CAS  Google Scholar 

  • Cohen G, Rapatz W, Ruis H (1988) Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem 176:159–163

    Article  CAS  Google Scholar 

  • Crichton PG, Affourtit C, Moore AL (2007) Identification of a mitochondrial alcohol dehydrogenase in Schizosaccharomyces pombe: new insights into energy metabolism. Biochem J 401:459–464

    Article  CAS  Google Scholar 

  • Davidson JF, Schiestl RH (2001) Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol 21:8483–8489

    Article  CAS  Google Scholar 

  • Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57:779S–786S

    CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Rad Biol Med 11:81–128

    Article  CAS  Google Scholar 

  • Ferreira R, Alves-Pereira I, Magriço S, Ferraz-Franco C (2006) Comparative effects of NH4VO3 on detoxication enzymes and redox state of wine Saccharomyces. In: Collery P (ed) Metal ions in biology and medicine, vol 9. John Libbey Eurotext, Paris, pp 169–174

    Google Scholar 

  • Fleet H, Heard GM (1992) Yeast-growth during fermentation. In: Fleet H (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 27–54

    Google Scholar 

  • Flohé L, Gunzler WA (1984) Assay of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  Google Scholar 

  • Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:3C-14S–3C-38S

    Article  Google Scholar 

  • Herrero E, Ros J, Belli G, Cabiscol E (2008) Redox control and oxidative stress in yeast cell. Biochim Biophys Acta 1780:1217–1235

    Google Scholar 

  • Holme DJ, Peck H (1993) Enzymes. In: Holme DJ (ed) Analytical biochemistry, 2nd edn. John Wiley & Sons, New York, pp 261–318

    Google Scholar 

  • Inoue Y, Matsuda T, Sugiyama KI, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009

    Article  CAS  Google Scholar 

  • Izawa S, Inoue Y, Kimura A (1995) Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 368:73–76

    Article  CAS  Google Scholar 

  • Jault JM, Comte J, Gautheron DC, Dipietro A (1994) Preparation of highly phosphorylating mitochondria from the yeast Schizosaccharomyces pombe. J Bioenerg Biomembr 26:447–456

    Article  CAS  Google Scholar 

  • Kappus H (1987) A survey of chemicals inducing lipid peroxidation in biological systems. Chem Phys Lipids 45:105–115

    Article  CAS  Google Scholar 

  • Kitamura Y, Umemura T, Okazaki K, Kankil K, Imazawa T, Masegi T, Nishikawa A, Hirose M (2006) Enhancing effects of simultaneous treatment with sodium nitrite on 2-amino 3 methylimidazo[4,5-f]quinoline-induced rat liver, colon and Zymbal’s gland carcinogenesis after initiation with diethylnitrosamine and 1,2-dimethylhydrazine. Int J Cancer 118:2399–2404

    Article  CAS  Google Scholar 

  • Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    Article  CAS  Google Scholar 

  • Li W, Sun L, Liang Q, Wang J, Mo W, Zhou B (2006) Yeast AMID homologue Ndi1p displays respiration restricted apoptotic activity and is involved in chronological aging. Mol Biol Cell 17:1802–1811

    Article  CAS  Google Scholar 

  • Lock EA, Mitchell AM, Elcombe CR (1989) Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu Rev Pharmacol Toxicol 29:145–163

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr L, Randall RJ (1951) Protein measure with de folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Côrte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598–2606

    Article  CAS  Google Scholar 

  • Ludovico P, Sansonetty F, Silva MT, Côrte-Real M (2003) Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS yeast research 3:91–96

    CAS  Google Scholar 

  • Luttik MA, Overkamp KM, Kotter P, Vries S, Dijken JP, Pronk JT (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273:24529–24534

    Article  CAS  Google Scholar 

  • Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767

    Article  CAS  Google Scholar 

  • Madeo F, Engelhardt S, Herker E, Lehman N, Maldener C, Proksch A, Wissing S, Frohlich KU (2002) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet 41:2008–2216

    Article  Google Scholar 

  • Mannazzu I (2001) Vanadium detoxification and resistance in yeast: a minireview. Ann Microbiol 51:1–9

    CAS  Google Scholar 

  • Maris AF, Assumpcao AL, Bonatto D, Brendel M, Henriques JA (2001) Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Curr Genet 9:137–149

    Article  Google Scholar 

  • Matsuyama S, Xu Q, Velours J, Red JC (1998) Mitochondrial F0F1-ATPase proton-pump is required for function of pro-apoptotic protein Bax in yeast and mammalian cells. Mol Cell 1:327–336

    Article  CAS  Google Scholar 

  • Moore AL, Walters AJ, Thorpe J, Fricaud AC, Watts FZ (1992) Schizosaccharomyces pombe mitochondria: morphological, respiratory and protein import characteristics. Yeast 8:923–933

    Article  CAS  Google Scholar 

  • Nechay BR (1984) Mechanisms of action of vanadium. Annu Rev Pharmacol Toxicol 24:501–524

    Article  CAS  Google Scholar 

  • Overkamp KM, Baker BM, Kotter P, van Tuijl A, de Vries S, van Dijken JO, Pronk JT (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182:2823–2830

    Article  CAS  Google Scholar 

  • Penuelas J, Filella I (2002) Metal pollution in Spanish terrestrial ecosystems during twentieth century. Chemosphere 46:501–505

    Article  CAS  Google Scholar 

  • Petrova VY, Drescher D, Kujumdzieva AV, Schmitt MJ (2004) Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem J 380:393–400

    Article  CAS  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  Google Scholar 

  • Querol A, Fernández-Espinar MT, Olmo M, Barrio E (2003) Adaptative evolution of wine yeast. Int J Food Microbiol 86:3–10

    Article  CAS  Google Scholar 

  • Sedensky MM, Morgan PG (2006) Mitochondrial respiration and reactive oxygen species in mitochondrial aging mutants. Exp Geront 41:237–245

    Article  CAS  Google Scholar 

  • Sies H, de Groot H (1992) Role of reactive oxygen species in cell toxicity. Toxicol Lett 64–65:547–551

    Article  Google Scholar 

  • Simon M, Adam G, Rapatz W, Spevak W, Ruis H (1991) The Saccharomyces cerevisiae ADRI gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol Cel Bio 11:699–704

    CAS  Google Scholar 

  • Skoneczny M, Chelstowska A, Rytka J (1988) Study of the conduction by fatty acids of catalase A and acyl-CoA oxidase. Eur J Biochem 174:297–302

    Article  CAS  Google Scholar 

  • Small WC, McAlister-Henn L (1998) Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. J Bacteriol 180:4051–4055

    CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1997) Biometry. W. H. Freeman, New York

    Google Scholar 

  • Steels EL, Learmonth RP, Watso K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140:569–576

    Article  CAS  Google Scholar 

  • Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50:133–157

    Article  CAS  Google Scholar 

  • Turton HE, Dawes IW, Grant CM (1997) Saccharomyces cerevisiae exhibits a yAP-1-mediated adaptive response to malondialdehyde. J Bacteriol 179:1096–1101

    CAS  Google Scholar 

  • Tzagoloff A (1971) Assembly of the mitochondrial membrane system. IV Role of mitochondrial and cytoplasmic protein synthesis in the biosynthesis of the rutamycin-sensitive adenosine triphosphate. J Biol Chem 246:3050–3056

    CAS  Google Scholar 

  • Tzagoloff A, Akai A, Needleman RB (1975) Assembly of the mitochondrial membrane system. Characterization of nuclear mutants of Saccharomyces cerevisiae with defects in mitochondrial ATPase and respiratory enzymes. J Biol Chem 250:8228–8235

    CAS  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissue by the thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  Google Scholar 

  • Veenhuis M, Mateblowski M, Kunau WH, Harder W (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3:77–84

    Article  CAS  Google Scholar 

  • Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Rad Biol Med 36:1434–1443

    Article  CAS  Google Scholar 

  • Willsky GR (1990) Vanadium in the biosphere. In: Chasteen ND (ed) Vanadium in biological systems. Kluwer, Netherlands, pp 1–24

    Google Scholar 

  • Wissing S et al (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    Article  CAS  Google Scholar 

  • Wu M, Xu LG, Li X, Zhai Z, Shu HB (2002) AMID, an apoptosisinducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge to “Instituto de Ciências Agrárias e Ambientais Mediterrânicas” (ICAM) at University of Évora, Portugal, by financial support of this work. We thanks to Engº Paulo Laureano of the Laboratory of Enology of University of Évora for the yielding of the yeast strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosado, T., Conim, A., Alves-Pereira, I. et al. Vanadium pentoxide effects on stress responses in wine Saccharomyces cerevisiae strain UE-ME3 . Ecotoxicology 18, 1116–1122 (2009). https://doi.org/10.1007/s10646-009-0363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0363-9

Keywords

Navigation