Skip to main content
Log in

From simple toxicological models to prediction of toxic effects in time

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The ability to predict the effects of toxicants in organisms with reasonable accuracy depends to a great extent on the toxico-kinetic models used to describe such effects. Toxic effects of organic chemicals and heavy metals have been described adequately using a hyperbolic model that considers the concentration of the toxicant and the time of exposure only. Such a model relies on the median time to effect (ET50) of a chemical to estimate effects at any exposure time, but cannot make predictions for concentrations other than those tested experimentally. A complementary log-to-log model can calculate all ET50 values for a toxicant, thus enabling the hyperbolic model to predict any level of effect for any combination of concentrations and times of exposure. The parameter values used in both models are obtained from experimental bioassays where the time-to-effect of a toxicant is recorded regularly in addition to standard acute or chronic toxicity data. These models will facilitate the risk assessment of chemicals by (1) predicting effects under any combination of time and concentrations, and (2) reducing to a minimum the experimental efforts required to obtain comprehensive ecotoxicity data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bedaux JJM, Kooijman SALM (1994) Statistical analysis of bioassays based on hazard modelling. Environ Ecol Stat 1:303–314. doi:10.1007/BF00469427

    Article  Google Scholar 

  • Beketov MA, Liess M (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ Toxicol Chem 27:461–470. doi:10.1897/07-322R.1

    Article  CAS  Google Scholar 

  • Bliss CI (1937) The calculation of the time–mortality curve. Ann Appl Biol 24:815–852

    CAS  Google Scholar 

  • Bonnomet V, Duboudin C, Magaud H, Thybaud E, Vindimian E, Beauzamy B (2002) Modelling explicitly and mechanistically median lethal concentration as a function of time for risk assessment. Environ Toxicol Chem 21:2252–2259. doi:10.1897/1551-5028(2002)021<2252:MEAMML>2.0.CO;2

    Article  CAS  Google Scholar 

  • Breck JE (1988) Relationships among models for acute toxic effects: applications to fluctuating concentrations. Environ Toxicol Chem 7:775–778. doi:10.1897/1552-8618(1988)7[775:RAMFAT]2.0.CO;2

    Article  CAS  Google Scholar 

  • Brent RN, Herricks EE (1998) Postexposure effects of brief cadmium, zinc and phenol exposures on freshwater organisms. Environ Toxicol Chem 17:2091–2099. doi:10.1897/1551-5028(1998)017<2091:PEOBCZ>2.3.CO;2

    Article  CAS  Google Scholar 

  • Brisbin IL Jr (1990) Applications of a modified Richards sigmoid model to assess the uptake and effects of environmental contaminants upon birds. In: Kendall RJ, Larcher TE (eds) Wildlife toxicology and population modeling. Lewis Publishers, Boca Raton, pp 161–170

    Google Scholar 

  • Brown VM, Jordan DHM, Tiller BA (1969) The acute toxicity to rainbow trout of fluctuating concentrations and mixtures of ammonia, phenol and zinc. J Fish Biol 1:1–9. doi:10.1111/j.1095-8649.1969.tb03837.x

    Article  CAS  Google Scholar 

  • Chaisuksant Y, Yu Q, Connell D (1997) Internal lethal concentrations of halobenzenes with fish (Gambusia affinis). Ecotoxicol Environ Saf 37:66–75. doi:10.1006/eesa.1997.1524

    Article  CAS  Google Scholar 

  • Connolly JP (1985) Predicting single-species toxicity in natural water systems. Environ Toxicol Chem 4:573–582. doi:10.1897/1552-8618(1985)4[573:PSTINW]2.0.CO;2

    Article  CAS  Google Scholar 

  • Daniels RE, Allan JD (1981) Life table evaluation of chronic exposure to a pesticide. Can J Fish Aquat Sci 38:485–494. doi:10.1139/f81-070

    Article  CAS  Google Scholar 

  • Dixon PM, Newman MC (1991) Analyzing toxicity data using statistical models for time-to-death: an introduction. In: Newman MC, McIntosh AW (eds) Metal ecotoxicology. Concepts and applications. Lewis Publishers, Chelsea, pp 207–242

    Google Scholar 

  • Forbes VE, Calow P, Sibly RM (2001) Are current species extrapolation models a good basis for ecological risk assessment? Environ Toxicol Chem 20:442–447. doi:10.1897/1551-5028(2001)020<0442:ACSEMA>2.0.CO;2

    Article  CAS  Google Scholar 

  • Grant A (1998) Population consequences of chronic toxicity: incorporating density dependence into the analysis of life table response experiments. Ecol Model 105:325–335. doi:10.1016/S0304-3800(97)00176-2

    Article  CAS  Google Scholar 

  • Hickie BE, McCarty LS, Dixon DG (1995) A residue-based toxicokinetic model for pulse–exposure toxicity in aquatic systems. Environ Toxicol Chem 14:2187–2197. doi:10.1897/1552-8618(1995)14[2187:ARTMFP]2.0.CO;2

    Article  CAS  Google Scholar 

  • Hoang TC, Tomasso JR, Klaine SJ (2007) An integrated model describing the toxic responses of Daphnia magna to pulsed exposures of three metals. Environ Toxicol Chem 26:132–138. doi:10.1897/06-081R.1

    Article  CAS  Google Scholar 

  • Kooijman SALM (1981) Parametric analyses of mortality rates in bioassays. Water Res 15:107–119. doi:10.1016/0043-1354(81)90190-1

    Article  CAS  Google Scholar 

  • Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Kooijman SALM, Bedaux JJM (1996) The analysis of aquatic toxicity data. VU University Press, Amsterdam

    Google Scholar 

  • Kooijman SALM, Bedaux JJM, Slob W (1996) No-effect concentrations as a basis for ecological risk assessment. Risk Anal 16:445–447. doi:10.1111/j.1539-6924.1996.tb01091.x

    Article  CAS  Google Scholar 

  • Mackay D, Puig H, McCarty LS (1992) An equation describing the time course and variability in uptake and toxicity of narcotic chemicals to fish. Environ Toxicol Chem 11:941–951. doi:10.1897/1552-8618(1992)11[941:AEDTTC]2.0.CO;2

    Article  CAS  Google Scholar 

  • Mancini JL (1983) A method for calculating effects on aquatic organisms of time varying concentrations. Water Res 17:1355–1362. doi:10.1016/0043-1354(83)90264-6

    Article  CAS  Google Scholar 

  • McCahon CP, Pascoe D (1990) Episodic pollution: causes, toxicological effects and ecological significance. Funct Ecol 4:375–383. doi:10.2307/2389599

    Article  Google Scholar 

  • McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Body residues and modes of toxic action. Environ Sci Technol 27:1719–1728. doi:10.1021/es00046a001

    Article  Google Scholar 

  • Mortimer MR, Connell DW (1994) Critical internal and aqueous lethal concentrations of chlorobenzenes with the crab Portunus pelagicus (L.). Ecotoxicol Environ Saf 28:298–312. doi:10.1006/eesa.1994.1054

    Article  CAS  Google Scholar 

  • Newman MC (1995) Quantitative methods in aquatic ecotoxicology. CRC Publishing, Boca Raton

    Google Scholar 

  • Newman MC, Aplin MS (1992) Enhancing toxicity data interpretation and prediction of ecological risk with survival time modeling: an illustration using sodium chloride toxicity to mosquitofish (Gambusia holbrooki). Aquat Toxicol 23:85–96. doi:10.1016/0166-445X(92)90001-4

    Article  CAS  Google Scholar 

  • Newman MC, McCloskey JT (1996) Time-to-event analyses of ecotoxicity data. Ecotoxicology 5:187–196. doi:10.1007/BF00116339

    Article  Google Scholar 

  • Organization for Economic Cooperation and Development (1993) OECD guidelines for testing of chemicals. Procedure 202—Daphnia sp., Acute immobilisation test and reproduction test. Paris, France

  • Pascoe D, Shazili NAM (1986) Episodic pollution—a comparison of brief and continuous exposure of rainbow trout to cadmium. Ecotoxicol Environ Saf 12:189–198. doi:10.1016/0147-6513(86)90010-2

    Article  CAS  Google Scholar 

  • Peakall D (1992) Animal biomarkers as pollution indicators. Chapman & Hall, Cornwall

    Google Scholar 

  • Péry ARR, Flammarion P, Vollat B, Bedaux JJM, Kooijman SALM, Garric J (2002) Using a biology-based model (DEBtox) to analyse bioassays in ecotoxicology: oportunities and recommendations. Environ Toxicol Chem 21:459–465. doi:10.1897/1551-5028(2002)021<0459:UABBMD>2.0.CO;2

    Article  Google Scholar 

  • Reinert KH, Giddings JM, Judd L (2002) Effects analysis of time-varying or repeated exposures in aquatic ecological risk assessment of agrochemicals. Environ Toxicol Chem 21:1977–1992. doi:10.1897/1551-5028(2002)021<1977:EAOTVO>2.0.CO;2

    Article  CAS  Google Scholar 

  • Sánchez-Bayo F (2006) Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda. Environ Pollut 139:385–420. doi:10.1016/j.envpol.2005.06.016

    Article  Google Scholar 

  • Sánchez-Bayo F, Goka K (2006) Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans. Aquat Toxicol 78:262–271. doi:10.1016/j.aquatox.2006.03.009

    Article  Google Scholar 

  • Sánchez-Bayo F, Goka K (2007) Simplified models to analyse time- and dose-dependent responses of populations to toxicants. Ecotoxicology 16:511–523. doi:10.1007/s10646-007-0158-9

    Article  Google Scholar 

  • Sprague JB (1969) Measurement of pollutant toxicity to fish. I. Bioassay methods for acute toxicity. Water Res 3:793–821. doi:10.1016/0043-1354(69)90050-5

    Article  CAS  Google Scholar 

  • Suter-II GW, Rosen AE, Linder E, Parkhurst DF (1987) Endpoints for responses of fish to chronic exposures. Environ Toxicol Chem 6:793–809. doi:10.1897/1552-8618(1987)6[793:EFROFT]2.0.CO;2

    Article  Google Scholar 

  • Truhaut R (1977) Ecotoxicology: objectives, principles and perspectives. Ecotoxicol Environ Saf 1:151–173. doi:10.1016/0147-6513(77)90033-1

    Article  CAS  Google Scholar 

  • Walthall WK, Stark JD (1997) A comparison of acute mortality and population growth rate as endpoints of toxicological effect. Ecotoxicol Environ Saf 37:45–52. doi:10.1006/eesa.1997.1521

    Article  CAS  Google Scholar 

  • Widianarko B, Kuntoro FXS, Van Gestel CAM, Van Straalen NV (2001) Toxicokinetics and toxicity of zinc under time-varying exposure in the guppy (Poecilia reticulata). Environ Toxicol Chem 20:763–768. doi:10.1897/1551-5028(2001)020<0763:TATOZU>2.0.CO;2

    Article  CAS  Google Scholar 

  • Yu Q, Chaisuksant Y, Connell D (1999) A model for non-specific toxicity with aquatic organisms over relatively long periods of exposure time. Chemosphere 38:909–919. doi:10.1016/S0045-6535(98)00220-3

    Article  CAS  Google Scholar 

  • Zhao Y, Newman MC (2004) Shortcomings of the laboratory-derived median lethal concentration for predicting mortality in field populations: exposure duration and latent mortality. Environ Toxicol Chem 26:2147–2153. doi:10.1897/03-557

    Article  Google Scholar 

  • Zhao Y, Newman MC (2006) Effects of exposure duration and recovery time during pulsed exposures. Environ Toxicol Chem 25:1298–1304. doi:10.1897/05-341R.1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Sánchez-Bayo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Bayo, F. From simple toxicological models to prediction of toxic effects in time. Ecotoxicology 18, 343–354 (2009). https://doi.org/10.1007/s10646-008-0290-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0290-1

Keywords

Navigation