Skip to main content
Log in

The organophosphorous pesticide, fenitrothion, acts as an anti-androgen and alters reproductive behavior of the male three-spined stickleback, Gasterosteus aculeatus

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Fenitrothion (FN) is a widely used organophosphorous pesticide that has structural similarities with the clinical anti-androgen flutamide. The potential for FN to act as an anti-androgen (at exposures of 1, 50, and 200 μg FN/l over a 26-day period) was assessed in male three-spined sticklebacks, Gasterosteus aculeatus, by measuring kidney spiggin concentration, nest-building, and courtship behavior. Spiggin is the glue protein that male sticklebacks use to build their nests and is directly controlled by androgens. FN exposure significantly reduced spiggin production as well as nest-building activity. It also adversely affected courtship—especially the ‘zigzag dance’ and biting behavior of the males. FN thus appears to have anti-androgenic effects on both the physiology and behavior of the male stickleback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Advisory Committee on Pesticides (2006) Evaluation on fenitrothion. Department for Environment, Food and Rural Affairs, Pesticides Safety Directorate, Issue No 225, York, 324 pp

  • Allen Y, Scott AP, Matthiessen P, Haworth S, Thain JE, Feist S (1999) Survey of estrogenic activity in United Kingdom estuarine and coastal waters and its effects on gonadal development of the flounder Platichthys flesus. Environ Toxicol Chem 18:1791–1800. doi :10.1897/1551-5028(1999)018<1791:SOEAIU>2.3.CO;2

    Article  CAS  Google Scholar 

  • Ankley GT, Jensen KM, Kahl MD, Korte JJ, Makynen EA (2001) Description and evaluation of a short-term reproduction test with the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1276–1290. doi :10.1897/1551-5028(2001)020<1276:DAEOAS>2.0.CO;2

    Article  CAS  Google Scholar 

  • Baatrup E, Junge M (2001) Antiandrogenic pesticides disrupt sexual characteristics in the adult male guppy (Poecilia reticulata). Environ Health Perspect 109:1063–1070. doi:10.2307/3454962

    Article  CAS  Google Scholar 

  • Bakker TCM, Sevenster P (1989) Changes in the sexual tendency accompanying selection for aggressiveness in the 3-spined stickleback, Gasterosteus aculeatus L. J Fish Biol 34:233–243. doi:10.1111/j.1095-8649.1989.tb03305.x

    Article  Google Scholar 

  • Bayley M, Junge M, Baatrup E (2002) Exposure of juvenile guppies to three antiandrogens causes demasculinization and a reduced sperm count in adult males. Aquat Toxicol 56:227–239. doi:10.1016/S0166-445X(01)00210-7

    Article  CAS  Google Scholar 

  • Bayley M, Larsen PF, Baekgaard H, Baatrup E (2003) The effects of vinclozolin, an anti-androgenic fungicide, on male guppy secondary sex characters and reproductive success. Biol Reprod 69:1951–1956. doi:10.1095/biolreprod.103.017780

    Article  CAS  Google Scholar 

  • Bell AM (2001) Effects of an endocrine disrupter on courtship and aggressive behaviour of male three-spined stickleback, Gasterosteus aculeatus. Anim Behav 62:775–780. doi:10.1006/anbe.2001.1824

    Article  Google Scholar 

  • Bernhardt RR, von Hippel FA (2008) Chronic perchlorate exposure impairs stickleback reproductive behaviour and swimming performance. Behaviour 145:527–559

    Google Scholar 

  • Bernhardt RR, von Hippel FA, Cresko WA (2006) Perchlorate induces hermaphroditism in threespine sticklebacks. Environ Toxicol Chem 25:2087–2096. doi:10.1897/05-454R.1

    Article  CAS  Google Scholar 

  • Bjerselius R, Lundstedt-Enkel K, Olsen H, Mayer I, Dimberg K (2001) Male goldfish reproductive behaviour and physiology are severely affected by exogenous exposure to 17β-estradiol. Aquat Toxicol 53:139–152. doi:10.1016/S0166-445X(00)00160-0

    Article  CAS  Google Scholar 

  • Björkblom C, Olsson PE, Katsiadaki I, Wiklund T (2007) Estrogen- and androgen-sensitive bioassays based on primary cell and tissue slice cultures from three-spined stickleback (Gasterosteus aculeatus). Comp Biochem Physiol C Toxicol Pharmacol 146:431–442. doi:10.1016/j.cbpc.2007.05.004

    Article  Google Scholar 

  • Borg B, Antonopoulou E, Andersson E, Carlberg T, Mayer I (1993) Effectiveness of several androgens in stimulating kidney hypertrophy, a secondary sexual character, in castrated male 3- spined sticklebacks, Gasterosteus aculeatus. Can J Zool 71:2327–2329. doi:10.1139/z93-326

    Article  CAS  Google Scholar 

  • Borg B, Mayer I (1995) Androgens and behaviour in the three-spined stickleback. Behaviour 132:1025–1035. doi:10.1163/156853995X00432

    Article  Google Scholar 

  • Brian JV, Augley JJ, Braithwaite VA (2006) Endocrine disrupting effects on the nesting behaviour of male three-spined stickleback Gasterosteus aculeatus L. J Fish Biol 68:1883–1890. doi:10.1111/j.0022-1112.2006.01053.x

    Article  CAS  Google Scholar 

  • Clotfelter ED, Bell AM, Levering KR (2004) The role of animal behaviour in the study of endocrine-disrupting chemicals. Anim Behav 68:665–676

    Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Google Scholar 

  • Daxenberger A (2002) Pollutants with androgen-disrupting potency. Eur J Lipid Sci Technol 104:124–130. doi :10.1002/1438-9312(200202)104:2<124::AID-EJLT124>3.0.CO;2-T

    Article  CAS  Google Scholar 

  • Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558. doi:10.1021/es9707973

    Article  CAS  Google Scholar 

  • Environmental Health Criteria (EHC) (1992) No. 133 Fenitrothion. IPCS INCHEM database. http://www.inchem.org/documents/ehc/ehc/ehc133.htm

  • Fleming WJ, Grue CE (1981) Recovery of cholinesterase activity in five avian species exposed to dicrothophhos, an organophosphorus pesticide. Pestic Biochem Physiol 16:129–135. doi:10.1016/0048-3575(81)90045-6

    Article  CAS  Google Scholar 

  • Gray LE, Ostby J, Furr J, Wolf CJ, Lambright C, Parks L et al (2001) Effects of environmental antiandrogens on reproductive development in experimental animals. Hum Reprod Update 7:248–264. doi:10.1093/humupd/7.3.248

    Article  CAS  Google Scholar 

  • Gray LE, Wilson VS, Stoker T, Lambright C, Furr J, Noriega N et al (2006) Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals. Int J Androl 29:96–104. doi:10.1111/j.1365-2605.2005.00636.x

    Article  CAS  Google Scholar 

  • Gray MA, Teather KL, Metcalfe CD (1999) Reproductive success and behavior of Japanese medaka (Oryzias latipes) exposed to 4-tert-octylphenol. Environ Toxicol Chem 18:2587–2594. doi :10.1897/1551-5028(1999)018<2587:RSABOJ>2.3.CO;2

    Article  CAS  Google Scholar 

  • Guthrie DM, Muntz WRA (1993) Chapter 4. Role of vision in fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman & Hall, London, pp 89–128

    Google Scholar 

  • Hahlbeck E, Katsiadaki I, Mayer I, Adolfsson-Erici M, James J, Bengtsson B-E (2004) The juvenile three-spined stickleback (Gasterosteus aculeatus L.) as a model organism for endocrine disruption II- kidney hypertrophy, vitellogenin and spiggin induction. Aquat Toxicol 70:311–326. doi:10.1016/j.aquatox.2004.10.004

    Article  CAS  Google Scholar 

  • Hershberger LG, Shipley EG, Meyer RK (1953) Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method. Proc Soc Exp Biol Med 83:175–180

    CAS  Google Scholar 

  • Hoar WS (1962) Hormones and the reproductive behaviour of the male three-spined stickleback (Gasterosteus aculeatus). Anim Behav 10:247–266. doi:10.1016/0003-3472(62)90049-0

    Article  Google Scholar 

  • Hotchkiss AK, Parks-Saldutti LG, Ostby JS, Lambright C, Furr J, Vandenbergh JG et al (2004) A mixture of the “antiandrogens” linuron and butyl benzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion. Biol Reprod 71:1852–1861. doi:10.1095/biolreprod.104.031674

    Article  CAS  Google Scholar 

  • Howell WM, Black DA, Bortone SA (1980) Abnormal expression of secondary sex characters in a population of mosquitofish, Gambusia affinis holbrooki: evidence for environmentally-induced masculinization. Copeia 1980:676–681

  • Hutchinson TH, Shillabeer N, Winter MJ, Pickford DB (2006) Acute and chronic effects of carrier solvents in aquatic organisms: a critical review. Aquat Toxicol 76:69–92. doi:10.1016/j.aquatox.2005.09.008

    Article  CAS  Google Scholar 

  • Jakobsson S, Borg B, Haux C, Hyllner SJ (1999) An 11-ketotestosterone induced kidney-secreted protein: the nest building glue from male three-spined stickleback, Gasterosteus aculeatus. Fish Physiol Biochem 20:79–85. doi:10.1023/A:1007776016610

    Article  CAS  Google Scholar 

  • Johnson I, Hetheridge M, Tyler CR (2007) Assessment of (anti-) oestrogenic and (anti-) androgenic activities of final effluents from sewage treatment works. Science report-SC020118/SR, Environment Agency, Bristol, UK, 61 pp

  • Jolly C, Katsiadaki I, Le Belle N, Mayer I, Dufour S (2006) Development of a stickleback kidney cell culture assay for the screening of androgenic and anti-androgenic endocrine disrupters. Aquat Toxicol 79:158–166. doi:10.1016/j.aquatox.2006.06.005

    Article  CAS  Google Scholar 

  • Jones I, Lindberg C, Jakobsson S, Hellqvist A, Hellman U, Borg B et al (2001) Molecular cloning and characterization of spiggin—an androgen-regulated extraorganismal adhesive with structural similarities to Von Willebrand Factor-related proteins. J Biol Chem 276:17857–17863. doi:10.1074/jbc.M101142200

    Article  CAS  Google Scholar 

  • Katsiadaki I (2007) Chapter 10: the use of the stickleback as a sentinel and model species in ecotoxicology. In: Östlund-Nilsson S, Mayer I, Huntingford FA (eds) Biology of the three-spined stickleback. CRC Press, Boca Raton, pp 319–351

    Google Scholar 

  • Katsiadaki I, Sanders MB, Sebire M, Nagae M, Soyano K, Scott AP (2007) Threespined stickleback: an emerging model in environmental endocrine disruption. Environ Sci 14:263–283

    Google Scholar 

  • Katsiadaki I, Scott AP, Hurst MR, Matthiessen P, Mayer I (2002a) Detection of environmental androgens: a novel method based on enzyme-linked immunosorbent assay of spiggin, the stickleback (Gasterosteus aculeatus) glue protein. Environ Toxicol Chem 21:1946–1954. doi :10.1897/1551-5028(2002)021<1946:DOEAAN>2.0.CO;2

    Article  CAS  Google Scholar 

  • Katsiadaki I, Scott AP, Mayer I (2002b) The potential of the three-spined stickleback (Gasterosteus aculeatus L.) as a combined biomarker for oestrogens and androgens in European waters. Mar Environ Res 54:725–728. doi:10.1016/S0141-1136(02)00110-1

    Article  CAS  Google Scholar 

  • Katsiadaki I, Morris S, Squires C, Hurst MR, James JD, Scott AP (2006) Use of the three-spined stickleback (Gasterosteus aculeatus) as a sensitive in vivo test for the detection of environmental antiandrogens. Environ Health Perspect 114(Suppl 1):115–121

    Google Scholar 

  • Katsiadaki I, Scott AP (2006) The stickleback model in endocrine disruption research: An essential tool in the laboratory and the field. Mar Environ Res 62:S228–S229

    Google Scholar 

  • Kelce WR, Wilson EM (1997) Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications. J Mol Med 75:198–207. doi:10.1007/s001090050104

    Article  CAS  Google Scholar 

  • Kime DE, Nash JP, Scott AP (1999) Vitellogenesis as a biomarker of reproductive disruption by xenobiotics. Aquaculture 177:345–352. doi:10.1016/S0044-8486(99)00097-6

    Article  CAS  Google Scholar 

  • Lambright C, Ostby J, Bobseine K, Wilson V, Hotchkiss AK, Mann PC et al (2000) Cellular and molecular mechanisms of action of linuron: An antiandrogenic herbicide that produces reproductive malformations in male rats. Toxicol Sci 56:389–399. doi:10.1093/toxsci/56.2.389

    Article  CAS  Google Scholar 

  • McCarty J, Secord AL (1999) Nest-building behavior in PCB-contaminated tree swallows. Auk 116:55–63

    Google Scholar 

  • Morgan MJ, Fancey LL, Kiceniuk JW (1990) Response and recovery of brain acetylcholinesterase activity in Atlantic salmon (Salmo salar) exposed to fenitrothion. Can J Fish Aquat Sci 47:1652–1654

    Article  CAS  Google Scholar 

  • Oshima Y, Kang IJ, Kobayashi M, Nakayama K, Imada N, Honjo T (2003) Suppression of sexual behavior in male Japanese medaka (Oryzias latipes) exposed to 17β-estradiol. Chemosphere 50:429–436. doi:10.1016/S0045-6535(02)00494-0

    Article  Google Scholar 

  • Páll MK, Mayer I, Borg B (2002a) Androgen and behavior in the male three-spined stickleback, Gasterosteus aculeatus I.—Changes in 11-ketotestosterone levels during the nesting cycle. Horm Behav 41:377–383. doi:10.1006/hbeh.2002.1777

    Article  Google Scholar 

  • Páll MK, Mayer I, Borg B (2002b) Androgen and behavior in the male three-spined stickleback, Gasterosteus aculeatus II. Castration and 11-ketoandrostenedione effects on courtship and parental care during the nesting cycle. Horm Behav 42:337–344. doi:10.1006/hbeh.2002.1820

    Article  Google Scholar 

  • Panter GH, Hutchinson TH, Hurd KS, Sherren A, Stanley RD, Tyler CR (2004) Successful detection of (anti-) androgenic and aromatase inhibitors in pre-spawning adult fathead minnows (Pimephales promelas) using easily measured endpoints of sexual development. Aquat Toxicol 70:11–21. doi:10.1016/j.aquatox.2004.06.007

    Article  CAS  Google Scholar 

  • Peakall DB (1996) Disrupted patterns of behavior in natural populations as an index of ecotoxicity. Environ Health Perspect 104:331–335. doi:10.2307/3432653

    Article  CAS  Google Scholar 

  • Purdom CE, Hardiman PA, Bye VVJ, Eno NC, Tyler CR, Sumpter JP (1994) Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8:275–285. doi:10.1080/02757549408038554

    Article  CAS  Google Scholar 

  • Roberts DK, Silvey NJ, Bailey EM (1988) Brain acetylcholinesterase activity recovery following acute methylparathion intoxication in two feral rodent species: Comparison to laboratory rodents. Bull Environ Contam Toxicol 41:26–35. doi:10.1007/BF01689055

    Article  CAS  Google Scholar 

  • Rouse EF, Coppenger CJ, Barnes PR (1977) The effect of an androgen inhibitor on behavior and testicular morphology in the stickleback Gasterosteus aculeatus. Horm Behav 9:8–18. doi:10.1016/0018-506X(77)90045-9

    Article  CAS  Google Scholar 

  • Rowland WJ (2000) Habituation and development of response specificity to a sign stimulus: male preference for female courtship posture in stickleback. Anim Behav 60:63–68. doi:10.1006/anbe.2000.1462

    Article  Google Scholar 

  • Rowland WJ, Bolyard KJ, Jenkins JJ, Fowler J (1995) Video playback experiments on stickleback mate choice: female motivation and attentiveness to male colour cues. Anim Behav 49:1559–1567. doi:10.1016/0003-3472(95)90077-2

    Article  Google Scholar 

  • Rowland WJ, Grindle N, Maclaren RD, Granquist R (2002) Male preference for a subtle posture cue that signals spawning readiness in female sticklebacks. Anim Behav 63:743–748. doi:10.1006/anbe.2001.1956

    Article  Google Scholar 

  • Sanchez W, Katsiadaki I, Piccini B, Ditche J-M, Porcher J-M (2008) Biomarker responses in wild three-spined stickleback (Gasterosteus aculeatus L.) as a useful tool for freshwater biomonitoring: A multiparametric approach. Environ Int 34:490–498. doi:10.1016/j.envint.2007.11.003

    Article  CAS  Google Scholar 

  • Sancho E, Ferrando MD, Andreu E (1997) Response and recovery of brain acetylcholinesterase activity in the European eel, Anguilla anguilla, exposed to fenitrothion. Ecotoxicol Environ Saf 38:205–209. doi:10.1006/eesa.1997.1579

    Article  CAS  Google Scholar 

  • Scott AP, Sorensen PW (1994) Time-course of release of pheromonally active gonadal steroids and their conjugates by ovulatory goldfish. Gen Comp Endocrinol 96:309–323. doi:10.1006/gcen.1994.1186

    Article  CAS  Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. doi:10.1016/j.aquatox.2004.03.016

    Article  CAS  Google Scholar 

  • Sebire M, Katsiadaki I (2008) The reproductive behaviour of the three-spined stickleback as a novel assay for the detection of anti-androgens. Cybium 32(2) suppl., 59–60

    Google Scholar 

  • Scherer E (1975) Avoidance of fenitrothion by goldfish (Carassius auratus). Bull Environ Contam Toxicol 13:492–496. doi:10.1007/BF01721858

    Article  CAS  Google Scholar 

  • Seki M, Yokota H, Matsubara H, Maeda M, Tadokoro H, Kobayashi K (2004) Fish full life-cycle testing for androgen methyltestosterone on medaka (Oryzias latipes). Environ Toxicol Chem 23:774–781. doi:10.1897/03-26

    Article  CAS  Google Scholar 

  • Sohoni P, Lefevre PA, Ashby J, Sumpter JP (2001) Possible androgenic/anti-androgenic activity of the insecticide fenitrothion. J Appl Toxicol 21:173–178. doi:10.1002/jat.747

    Article  CAS  Google Scholar 

  • Sorsa SS, Li S-N, Fang D-F (2000) In vivo inhibition and recovery of brain acetylcholinesterase in topmouth gudgeon (Pseudorasobora parva) following exposure to fenitrothion. J Zhejiang Univ Sci 1:448–455. doi:10.1631/jzus.2000.0448

    Article  Google Scholar 

  • Sumpter JP (2005) Endocrine disrupters in the aquatic environment: An overview. Acta Hydrochim Hydrobiol 33:9–16. doi:10.1002/aheh.200400555

    Article  CAS  Google Scholar 

  • Sumpter JP, Jobling S (1995) Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect 103:173–178. doi:10.2307/3432529

    Article  CAS  Google Scholar 

  • Sunami O, Kunimatsu T, Yamada T, Yabushita S, Sukata T, Miyata K et al (2000) Evaluation of a 5-day Hershberger assay using young mature male rats: methyltestosterone and p,p′-DDE, but not fenitrothion, exhibited androgenic or antiandrogenic activity in vivo. J Toxicol Sci 25:403–415

    CAS  Google Scholar 

  • Symons PEK (1973) Behavior of young Atlantic salmon (Salmo salar) exposed to or force-fed fenitrothion, an organophosphate insecticide. J Fish Res Bd Can 30:651–655

    CAS  Google Scholar 

  • Tamura H, Maness SC, Reischmann K, Dorman DC, Gray LE, Gaido KW (2001) Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Toxicol Sci 60:56–62. doi:10.1093/toxsci/60.1.56

    Article  CAS  Google Scholar 

  • Tamura H, Yoshikawa H, Gaido KW, Ross SM, DeLisle RK, Welsh WJ et al (2003) Interaction of organophosphate pesticides and related compounds with the androgen receptor. Environ Health Perspect 111:545–552

    CAS  Google Scholar 

  • Thorpe K, Tyler CR (2005) Oestrogenic Endocrine Disruption in fish—developing biological effect measurement tools and generating hazard data. Science report-SC00043/SR. Environment Agency, Bristol, UK, p 91

    Google Scholar 

  • Thorpe KL, Hutchinson TH, Hetheridge MJ, Sumpter JP, Tyler CR (2000) Development of an in vivo screening assay for estrogenic chemicals using juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 19:2812–2820. doi :10.1897/1551-5028(2000)019<2812:DOAIVS>2.0.CO;2

    Article  CAS  Google Scholar 

  • Toft G, Baatrup E, Guillette LJ Jr (2004) Altered social behavior and sexual characteristics in mosquitofish (Gambusia holbrooki) living downstream of a paper mill. Aquat Toxicol 70:213–222. doi:10.1016/j.aquatox.2004.09.002

    Article  CAS  Google Scholar 

  • Toft G, Guillette LJ Jr (2005) Decreased sperm count and sexual behavior in mosquitofish exposed to water from a pesticide-contaminated lake. Ecotoxicol Environ Saf 60:15–20. doi:10.1016/j.ecoenv.2004.07.010

    Article  CAS  Google Scholar 

  • Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ Jr et al (1996) Male reproductive health and environmental xenoestrogens. Environ Health Perspect 104(Suppl):741–803. doi:10.2307/3432709

    Article  CAS  Google Scholar 

  • Tyler CR, Jobling S, Sumpter JP (1998) Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28:319–361. doi:10.1080/10408449891344236

    Article  CAS  Google Scholar 

  • Vos JG, Dybing E, Greim HA, Ladefoged O, Lambre C, Tarazona JV et al (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol 30:71–133. doi:10.1080/10408440091159176

    Article  CAS  Google Scholar 

  • Wibe AE, Rosenqvist G, Jenssen BM (2002) Disruption of male reproductive behavior in threespine stickleback Gasterosteus aculeatus exposed to 17β-estradiol. Environ Res 90:136–141. doi:10.1006/enrs.2002.4392

    Article  CAS  Google Scholar 

  • Williams K, Fisher JS, Turner KJ, Mckinnell C, Saunders PTK, Sharpe RM (2001) Relationship between expression of sex steroid receptors and structure of the seminal vesicles after neonatal treatment of rats with potent or weak estrogens. Environ Health Perspect 109:1227–1235. doi:10.2307/3454744

    Article  CAS  Google Scholar 

  • Wootton RJ (1976) The biology of the sticklebacks. Academic Press, London

    Google Scholar 

  • Zala SM, Penn DJ (2004) Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges. Anim Behav 68:649–664

    Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Department for Environment, Food and Rural Affairs (Defra, Grant number CT20051). We thank Dr. I. Barber (University of Leicester) for providing the FIT software. MS is presently funded by a NERC grant to CRT (NER/NE/E016634/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioanna Katsiadaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebire, M., Scott, A.P., Tyler, C.R. et al. The organophosphorous pesticide, fenitrothion, acts as an anti-androgen and alters reproductive behavior of the male three-spined stickleback, Gasterosteus aculeatus . Ecotoxicology 18, 122–133 (2009). https://doi.org/10.1007/s10646-008-0265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0265-2

Keywords