Skip to main content
Log in

Corticosterone in relation to tissue cadmium, mercury and selenium concentrations and social status of male lesser scaup (Aythya affinis)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Combined lesser scaup (Aythya affinis) and greater scaup (A. marila) populations have declined steadily from the 1970s. Accompanying the population decline have been two shifts in lesser scaup demographics: a decrease in the proportion of young birds and an increase in male to female ratio. In addition, there are concerns about potential effects of contaminants and trace elements. These metals may influence the stress response and corticosterone secretion. We examined impacts of cadmium, selenium and mercury on the stress response in relation to social status in male lesser scaup near Yellowknife, NWT May to June 2004 and 2005. Kidney cadmium and liver selenium and mercury ranged 0.78–93.6, 2.12–9.64, and 0.56–3.71 μg/g, dry weight, respectively. Results suggest that corticosterone release may be influenced by complex contaminant interactions in relation to body condition and body size. When cadmium was high and birds were in good body condition, there was a negative relationship between liver selenium and corticosterone (R 2 = 0.60, n = 10, P = 0.008) but not in birds with poor body condition (R 2 = 0.07, n = 9, P = 0.50). Unfortunately we were unable to draw any conclusions about metals and social status in relation to corticosterone or glucose and T4. This study emphasizes the complex nature of biological systems and the importance of considering interactions to characterize effects of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Afton AD (1985) Forced copulation as a reproductive strategy of male lesser scaup: a field test of some predictions. Behaviour 92:146–167. doi:10.1163/156853985X00424

    Article  Google Scholar 

  • Alisauskas RT, Ankney CD (1994) Nutrition of breeding female Ruddy ducks: the role of nutrient reserves. Condor 96:878–897. doi:10.2307/1369099

    Article  Google Scholar 

  • Anderson MG, Sayler RD, Afton AD (1980) A decoy trap for diving ducks. J Wildlife Manage 44:217–219. doi:10.2307/3808371

    Article  Google Scholar 

  • Anteau MJ, Afton AD, Custer CM, Custer TW (2007) Relationships of cadmium, mercury, and selenium with nutrient reserves of female lesser scaup (Aythya affinis) during winter and spring migration. Environ Toxicol Chem 26:515–520. doi:10.1897/06-309R.1

    Article  CAS  Google Scholar 

  • Astheimer LB, Buttemer WA, Wingfield JC (1992) Interactions of corticosterone with feeding, activity and metabolism in passerine birds. Ornis Scand 23:335–365. doi:10.2307/3676661

    Article  Google Scholar 

  • Atkinson S, Adams NR, Martin GB (1995) Secretion of adrenal steroids in female sheep of differing body size and composition. Small Rumin Res 17:237–243. doi:10.1016/0921-4488(95)00694-G

    Article  Google Scholar 

  • Austin JE, Custer CM, Afton AD (1998) Lesser scaup (Aythya affinis). In: Poole A, Gill F (eds) The birds of North America No. 338. The Birds of North America, Inc., Philadelphia, PA,

    Google Scholar 

  • Austin JE, Afton AD, Anderson MG, Clark RG, Custer CM, Lawrence JL et al (2000) Declining scaup populations: issues, hypotheses, and research needs. Wildlife Soc Bull 28:254–263

    Google Scholar 

  • Baos R, Blas J, Bortolotti GR, Marchant TA, Hiraldo F (2006) Adrenocortical response to stress and thyroid hormone status in free-living nestling white storks (Ciconia ciconia) exposed to heavy metal and arsnic contamination. Environ Health Perspect 114:1497–1501

    Article  CAS  Google Scholar 

  • Barboza PS, Jorde DG (2001) Intermittent feeding in a migratory omnivore: digestions and body composition of American black duck during migration. Physiol Biochem Zool 74:307–317. doi:10.1086/319658

    Article  CAS  Google Scholar 

  • Barregard L, Lindstedt G, Schutz A, Sallsten G (1994) Endocrine function in mercury exposed chloralkali workers. Occup Environ Med 51:536–540

    Article  CAS  Google Scholar 

  • Berney PJ, Veniat A, Mazallon M (2003) Bioaccumulation of lead, cadmium, and lindane in Zebra mussels (Driessena polymorpha) and associated risk for bioconcentrations in Tufted ducks (Aythia fuligula). Bull Environ Contam Toxicol 71:90–97. doi:10.1007/s00128-003-0135-9

    Article  CAS  Google Scholar 

  • Bleau H, Daniel C, Chevalier G, van Tra H, Hontela A (1996) Effects of acute exposure to mercury chloride and methylmercury on plasm cortisol, T3, T4, glucose and liver glycogen in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 34:221–235. doi:10.1016/0166-445X(95)00040-B

    Article  CAS  Google Scholar 

  • Burgess N, Evers D, Kaplan J (2005) Mercury and other contaminants in common loons breeding in Atlantic Canada. Ecotoxicology 14:241–252. doi:10.1007/s10646-004-6271-0

    Article  CAS  Google Scholar 

  • Burrin DG, Ferrell CL, Britton RA, Bauer M (1990) Level of nutrition and visceral organ size and metabolic activity in sheep. Br J Nutr 64:439–448. doi:10.1079/BJN19900044

    Article  CAS  Google Scholar 

  • Cabanero AI, Madrid Y, Camara C (2006) Selenium long-term administration and its effect on mercury toxicity. J Agric Food Chem 54:4461–4468. doi:10.1021/jf0603230

    Article  CAS  Google Scholar 

  • Chowdhury MJ, Pane EF, Wood CM (2004) Physiological effects of dietary cadmium acclimation and waterborne cadmium challenge in rainbow trout: respiratory, ionoregulatory, and stress parameters. Comp Biochem Phys C Toxicol Pharmacol 139:163–173

    Article  CAS  Google Scholar 

  • Creel S (2001) Social dominance and stress hormones. Trends Ecol Evol 16:491–497. doi:10.1016/S0169-5347(01)02227-3

    Article  Google Scholar 

  • Custer CM, Custer TW (2000) Organochlorine and trace element contamination in wintering and migrating diving ducks in the southern Great Lakes, USA, since the Zebra mussel invasion. Environ Toxicol Chem 19:2821–2829. doi :10.1897/1551-5028(2000)019<2821:OATECI>2.0.CO;2

    Article  CAS  Google Scholar 

  • Custer TW, Custer CM, Hines RK, Sparks DW (2000) Trace elements, organochlorines, polycyclic aromatic hydrocarbons, dioxins, and furans in lesser scaup wintering on Indiana Harbor Canal. Environ Pollut 110:469–482. doi:10.1016/S0269-7491(99)00315-2

    Article  CAS  Google Scholar 

  • Custer CM, Custer TW, Anteau MJ, Afton AD, Wooten DE (2003) Trace elements in lesser scaup (Aythya affinis) from the Mississippi Flyway. Ecotoxicology 12:47–54. doi:10.1023/A:1022584712262

    Article  CAS  Google Scholar 

  • De Blaaus I, Schols AM, Koerts-deLang E, Wouters EF, Deutz NE (2004) De novo glutamine sysnthesis induced by corticosteroids in vivo in rates is secondary to weight loss. Clin Nutr 23:1035–1042. doi:10.1016/j.clnu.2004.01.004

    Article  CAS  Google Scholar 

  • DeVink J-M, Clark RG, Slattery SM, Wayland M (2008) Is selenium affecting body condition and reproduction in boreal breeding scaup, scoters, and ring-necked ducks? Environ Pollut 152:1–7. doi:10.1016/j.envpol.2007.05.003

    Article  CAS  Google Scholar 

  • Di Giulio RT, Scanlon PF (1985) Effect of cadmium ingestion and food restriction on energy metabolism and tissue metal concentrations in mallard ducks (Anas platyrhynchos). Environ Res 37:433–444. doi:10.1016/0013-9351(85)90125-2

    Article  CAS  Google Scholar 

  • Drastichova J, Svobodova Z, Luskova V, Celechovska O, Kalab P (2004) Effect of cadmium on blood plasma biochemistry in carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 72:733–740. doi:10.1007/s00128-004-0306-3

    Google Scholar 

  • Draulans D (1982) Foraging and size selection of mussels by the tufted duck, Aythya fuligula. J Anim Ecol 51:943–956. doi:10.2307/4015

    Article  Google Scholar 

  • Fernie KJ, Shutt JL, Mayne GJ, Hoffman D, Letcher RJ, Drouillard KG et al (2005) Exposure to Polybrominated Diphenyl Ethers (PBDEs): changes in thyroid, vitamin A, glutathione homeostasis, and oxidative stress in American Kestrals (Falco sparverius). Toxicol Sci 88:375–383. doi:10.1093/toxsci/kfi295

    Article  CAS  Google Scholar 

  • Fortman JK, Rechling T, German RZ (2005) The impact of maternal protein malnutrition on pre-weaning skeletal and visceral organ growth in neonatal offspring of Rattus norvegicus. Growth Dev Aging 69:39–52

    CAS  Google Scholar 

  • Freeman HC, Sangalang GB (1977) A study of the effects of methyl mercury, cadmium, arsenic, selenium, and PCB, (Aroclor 1245) on adrenal and testicular steroidogenesis in vitro, by the grey seal, Halichoerus grypus. Arch Environ Contam Toxicol 5:369–383. doi:10.1007/BF02220918

    Article  CAS  Google Scholar 

  • Furness RW (1996) Cadmium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife. Lewis Publishers, New York, pp 389–404

    Google Scholar 

  • Gasiewicz T, Smith J (1976) Interactions of cadmium and selenium in rat plasma in vivo and in vitro. Biochim Biophys Acta 428:113–118

    CAS  Google Scholar 

  • Guthery FS, Lusk JJ, Peterson MJ (2001) The fall of the null hypothesis: liabilities and opportunities. J Wildlife Manage 65:379–384. doi:10.2307/3803089

    Article  Google Scholar 

  • Heath JA, Frederick PC (2005) Relationships among mercury concentrations, hormones, and nesting effort of White Ibises (Eudocimus albus) in the Florida Everglades. Auk 122:255–267. doi:10.1642/0004-8038(2005)122[0255:RAMCHA]2.0.CO;2

    Article  Google Scholar 

  • Heinz GH (1996) Selenium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife. Lewis Publishers, New York, pp 447–458

    Google Scholar 

  • Heinz GH, Hoffman DJ (1998) Methylmercury chloride and selenomethionine interactions on health and reproduction in mallards. Environ Toxicol Chem 17:139–145. doi :10.1897/1551-5028(1998)017<0139:MCASIO>2.3.CO;2

    Article  CAS  Google Scholar 

  • Hidalgo J, Armario A (1987) Effect of Cd administration on the pituitary-adrenal axis. Toxicology 45:113–116. doi:10.1016/0300-483X(87)90119-3

    Article  CAS  Google Scholar 

  • Hoffman D, Ohlendorf HM, Marn CM, Pendleton GW (1998) Association of mercury and selenium with altered glutathione metabolism and oxidative stress in diving ducks from the San Fransisco Bay region, USA. Environ Toxicol Chem 17:167–172. doi :10.1897/1551-5028(1998)017<0167:AOMASW>2.3.CO;2

    Article  CAS  Google Scholar 

  • Kitaysky AS, Kitaiskaia EV, Wingfield JC, Piatt JF (2001) Dietary restriction causes chronic elevation of corticosterone and enhances stress response in red-legged kittiwake chicks. J Comp Physiol [B] 171:701–709. doi:10.1007/s003600100230

    Google Scholar 

  • Kotrschal K, Hirschenhauser K, Mostl E (1998) The relationship between social stress and dominance is seasonal in greylag geese. Anim Behav 55:171–176. doi:10.1006/anbe.1997.0597

    Article  Google Scholar 

  • Lafuente A, Esquifino AI (1999) Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male. Toxicol Lett 110:209–218. doi:10.1016/S0378-4274(99)00159-9

    Article  CAS  Google Scholar 

  • Lafuente A, Marquez N, Pazo D, Esquifino AI (2000) Effects of subchronic alternating cadmium exposure on dopamine turnover and plasma levels or prolactin, GH and ACTH. Biometals 13:47–55. doi:10.1023/A:1009286709935

    Article  CAS  Google Scholar 

  • Levengood JM (2003) Cadmium and lead in tissues of mallards (Anas platythychos) and wood ducks (Aix sponsa) using the Illinois River (USA). Environ Pollut 122:177–181. doi:10.1016/S0269-7491(02)00298-1

    Article  CAS  Google Scholar 

  • Lovvorn JR, Gillingham MP (1996) A spatial energetics model of cadmium accumulation by diving ducks. Arch Environ Contam Toxicol 30:241–251. doi:10.1007/BF00215804

    Article  CAS  Google Scholar 

  • Moller G (1996) Biogeochemical interactions affecting hepatic trace element levels in aquatic birds. Environ Toxicol Chem 15:1025–1033. doi :10.1897/1551-5028(1996)015<1025:BIAHTE>2.3.CO;2

    Article  CAS  Google Scholar 

  • NAWMP (2004) North American waterfowl management plan 2004. Implementation framework: strengthening the biological foundation. Canadian Wildlife Service. United States Fish and Wildlife Service, North American Waterfowl Management Plan, Plan Committee, 106 pp

  • Neugebauer EA, Sans Cartier GL, Wakeford BJ (2000). Methods for the determination of metals in wildlife tissues using various atomic absorption spectrophotometry techniques. Canadian Wildlife Service, Hull, Quebec

  • Petrie S (2004) Selenium in scaup: a disturbing trend in the Great Lakes. Birdwatch Can 28:9–13

    Google Scholar 

  • Poisbleau M, Fritz H, Guillon N, Chastel O (2005) Linear social dominance hierarchy and corticosterone responses in male mallards and pintails. Horm Behav 47:485–492. doi:10.1016/j.yhbeh.2005.01.001

    Article  CAS  Google Scholar 

  • Potmis RA, Nonavinakere VA, Rasekh HR, Early JL (1993) Effect of selenium in plasma ACTH, endorphin, corticosterone and glucose in rat: influence of adrenal enucleation and metyrapone prettreatment. Toxicology 79:1–9. doi:10.1016/0300-483X(93)90201-3

    Article  CAS  Google Scholar 

  • Puls R (1994) Mineral levels in animal health: diagnostic data. Sherpa International, Clearbrook, BC

  • Rajanna B, Hobson M, Reese J, Sample E, Chapatwala KD (1984) Chronic hepatic and renal toxicity by cadmium in rats. Drug Chem Toxicol 7:229–241. doi:10.3109/01480548409035105

    Article  CAS  Google Scholar 

  • Reimers TJ, Lawler DF, Sutaria DF, Correa MT, Erb HN (1990) Effects of age, sex, and body size on serum concentartions of thyroid and adrenocortical hormones in dogs. Am J Vet Res 51:454–457

    CAS  Google Scholar 

  • Romero LM, Romero RC (2002) Corticosterone response in wild birds: the importance of rapid intial sampling. Condor 104:129–135. doi:10.1650/0010-5422(2002)104[0129:CRIWBT]2.0.CO;2

    Article  Google Scholar 

  • Røskaft E, Järvi T, Bakken M, Bech C, Reinertsen RE (1986) The relationship between social status and resting metabolic rate in great tits (Parus major) and pied flycatchers (Ficedula hypoleuca). Anim Behav 34:838–842. doi:10.1016/S0003-3472(86)80069-0

    Article  Google Scholar 

  • Searcy WA, Peters S, Nowicki S (2004) Effects of early nutrition on growth rate and adult size in song sparrows Melospiza melodia. J Avian Biol 35:269–279. doi:10.1111/j.0908-8857.2004.03247.x

    Article  Google Scholar 

  • Senar JC, Polo V, Uribe F, Camerino M (2000) Status signalling, metabolic rate and body mass in the siskin: the cost of being a subordinate. Anim Behav 59:103–110. doi:10.1006/anbe.1999.1281

    Article  Google Scholar 

  • Shuquin C, Hangting C, Xianjin Z (1999) Determination of mercury in biological samples using organiccompounds as matrix modifiers by inductively coupled plasma mass spectrometry. J Anal At Spectrom 14:1183–1186. doi:10.1039/a902772f

    Article  Google Scholar 

  • Silverin B (1998) Stress response in birds. Poult Avian Biol Rev 9:153–168

    Google Scholar 

  • Sin YM, Teh WF, Wong MK, Reddy PK (1990) Effect of mercury and glutathione and thyroid hormone. Bull Environ Contam Toxicol 44:616–622. doi:10.1007/BF01700885

    Article  CAS  Google Scholar 

  • Sorenson LG, Nolan PM, Brown AM, Derrickson SR, Monfort SL (1997) Hormonal dynamics during mate choice in the Northern pintail: a test of the “challenge” hypothesis. Anim Behav 54:1117–1133. doi:10.1006/anbe.1997.0554

    Article  Google Scholar 

  • Takekawa JY, Wainwright-De La Cruz SE, Hothem RL, Yee J (2002) Relating body condition to inorganic contaminant concentrations of diving ducks wintering in coastal California. Arch Environ Contam Toxicol 42:60–70. doi:10.1007/s002440010292

    Article  CAS  Google Scholar 

  • Wayland M, Gilchrist HG, Marchant T, Keating J, Smits JEG (2002) Immune function, stress response, and body condition in arctic-breeding common eiders in relation to cadmium, mercury, and selenium concentrations. Environ Res Sect A 90:47–60. doi:10.1006/enrs.2002.4384

    Article  CAS  Google Scholar 

  • Wayland M, Smits JEG, Gilchrist HG, Marchant T, Keating J (2003) Biomarker responses in nesting, common eiders in the Canadian arctic in relation to tissue cadmium, mercury and selenium concentrations. Ecotoxicology 12:225–237. doi:10.1023/A:1022506927708

    Article  CAS  Google Scholar 

  • Whanger PD, Oh SH (1979) Nutritional and environmental factors affecting metallothionein levels. Experentia 34:281–291

    CAS  Google Scholar 

  • Wingfield JC (1994) Modulation of the adrenocortical response to stress in birds. In: Davey KG, Peter RE, Tobe SS (eds) Perspectives in comparative endocrinology. National Research Council of Canada, Ottawa, pp 520–528

    Google Scholar 

  • Wingfield JC, Farner DS (1993) Endocrinology of reproduction in wild species. In: Farner DS, King JR (eds) Avian biology. Academic Press, London, pp 163–327

    Google Scholar 

  • Wingfield JC, Smith J, Farner D (1982) Endocrine responses to stress of White-crowned sparrows to environmental stress. Condor 84:399–409. doi:10.2307/1367443

    Article  Google Scholar 

  • Wingfield JC, Hegner RE, Dufty AF Jr, Ball GF (1990) The “challenge hypothesis’: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846. doi:10.1086/285134

    Article  Google Scholar 

  • Yu X, Hong S, Faustman EM (2008) Cadmium-induced activation of stress signalling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat sertoli cell-gonocyte cocultures. Toxicol Sci 104:385–396. doi:10.1093/toxsci/kfn087

    Article  CAS  Google Scholar 

  • Zillioux EJ, Porcella DB, Benoit JM (1993) Mercury cycling and effects in freshwater wetland ecosystems. Environ Toxicol Chem 12:2245–2264. doi:10.1897/1552-8618(1993)12[2245:MCAEIF]2.0.CO;2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Brua for aid in statistical analysis and R. Clark and G. Wobeser for comments on the preparation of this manuscript. We thank H. James and N. Harms for help in collection of samples and J. Heer for help during analysis of samples. We also thank J. Hines and S. Leach for their assistance. This project was funded by the National Sciences and Engineering Council of Canada and Environment Canada’s Science Horizons Youth Internship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Machin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollock, B., Machin, K.L. Corticosterone in relation to tissue cadmium, mercury and selenium concentrations and social status of male lesser scaup (Aythya affinis). Ecotoxicology 18, 5–14 (2009). https://doi.org/10.1007/s10646-008-0250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0250-9

Keywords

Navigation