Skip to main content
Log in

Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Uptake and translocation of chromium (Cr) by two willow species was investigated. Intact pre-rooted weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were grown hydroponically and spiked with hexavalent chromium [Cr (VI)] or trivalent chromium [Cr (III)] at 25.0 ± 0.5°C for 120 h. Removal of leaves was also performed as a treatment to quantify the effect of transpiration on uptake and translocation of either of the Cr species. Although the two willow species were able to eliminate Cr (VI) and Cr (III) from the hydroponic solution, significant differences in the removal rate for both chemical species were observed between the two willows (p < 0.05): faster removal rate for Cr (III) than Cr (VI) was detected in both willow species; hankow willows showed higher removal potential for both chemical species than weeping willows. Remarkable decreases in the removal rates for both Cr species were detected in the willows with leaves removed (p < 0.05). The results from the treatments spiked with Cr (VI) also revealed that Cr was more mobile in plant materials of hankow willows than that in weeping willows (p < 0.01), while higher translocation efficiency of Cr was observed in weeping willows than hankow willows for the Cr (III) treated (p < 0.01). However, a convincing decrease in the translocation efficiency due to the removal of leaves was only observed in the treatments spiked with Cr (VI) (p < 0.05). Substantial differences existed in the distribution of Cr species in plant materials after exposure of either of the chemical forms: roots and lower stems were the major sites for accumulation in weeping willows exposed to Cr (VI) and Cr (III), respectively; in contrast roots were the only sink in hankow willows exposed to both chemical species. The capacity of willows to assimilate both Cr species was also evaluated using detached leaves and roots of both willow species in sealed glass vessels in vivo. The results indicated that detached roots showed a more remarkable capacity to remove Cr (III) from the hydroponic solution than Cr (VI) (p < 0.01). Although detached leaves of both willow species were able to efficiently eliminate Cr (III), neither of them reduced the concentration of Cr (VI) in the solution. The results suggests that different mechanisms for uptake, assimilation and translocation of Cr (VI) and Cr (III) exist in different willow species and phytoremediation of Cr should consider this factor for the proposed target effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banks MK, Schwab AP, Henderson C (2006) Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62:255–264

    Article  CAS  Google Scholar 

  • Cheung KH, Gu J-D (2003) Reduction of chromate (CrO 2−4 ) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52:1523–1529

    Article  CAS  Google Scholar 

  • Cheung KH, Gu J-D (2005) Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. World J Microbiol Biotechnol 21:213–219

    Article  CAS  Google Scholar 

  • Cheung KH, Lai HY, Gu J-D (2006) Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–862

    CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L.cv. Azad) root mitochondria. Plant Cell Environ 25:687–693

    Article  CAS  Google Scholar 

  • Katz SA, Salem H (1994) The biological and environmental chemistry of chromium. VCH Publishers, New York

    Google Scholar 

  • Khan AG (2001) Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Envinon Int 26:417–423

    Article  CAS  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelam L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46

    Article  CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Licina V, Antic-Mladenovic S, Kresovic M (2007) The accumulation of heavy metals in plants (Lactuca sativa L. Fragaria vesca L.) after the amelioration of coalmine tailing soils with different organo-mineral amendments. Arch Agric Soil Sci 53:39–48

    Article  CAS  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123

    CAS  Google Scholar 

  • Meers E, Hopgood M, Lesge E, Vervake P, Tack FMG, Verloo MG (2004) Enhanced phytoextraction: in search of EDTA alternatives. Int J Phytorem 6:95–109

    Article  CAS  Google Scholar 

  • Overesch M, Rinklebe J, Broll G, Neue HU (2007) Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environ Pollut 145:800–812

    Article  CAS  Google Scholar 

  • Quaggiotti S, Barcaccia G, Schiavon M, Nicole S, Galla G, Rossignolo V, Soattin M, Malagoli M (2007) Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response. Gene 402:68–80

    Article  CAS  Google Scholar 

  • Ryan MP, Williams DE, Chater RJ, Hutton BM, McPhail DS (2002) Why stainless steel corrodes. Nature (London) 415:770–774

    CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2001) Plant screening for chromium phytoremediation. Int J Phytorem 2:31–51

    Article  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Skeffington RA, Shewry PR, Petersen PJ (1976) Chromium uptake and transport in barley seedlings Hordeum vulgare. Planta 132:209–214

    Article  CAS  Google Scholar 

  • Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39:154–160

    Article  CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium(VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Gu J-D (2005a) Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57:609–613

    Article  Google Scholar 

  • Xu XR, Li HB, Gu J-D, Li XY (2005b) Kinetics of the reduction of chromium (VI) by vitamin C. Environ Toxicol Chem 24:1310–1314

    Article  CAS  Google Scholar 

  • Yu XZ, Gu J-D (2006) Uptake, metabolism and toxicity of methyl tert-butyl ether (MTBE) in weeping willows. J Hazard Mater 137:1417–1423

    Article  CAS  Google Scholar 

  • Yu XZ, Gu J-D (2007a) Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz × alba L.) metabolism. Arch Environ Contam Toxicol 52:503–511

    Article  CAS  Google Scholar 

  • Yu XZ, Gu J-D (2007b) Metabolic responses of weeping willows to selenate and selenite. Env Sci Pollut Res 14:510–517

    Article  CAS  Google Scholar 

  • Yu XZ, Gu J-D (2008a) The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees. Ecotoxicology 17:143–152

    Article  CAS  Google Scholar 

  • Yu XZ, Gu J-D (2008b) Effect of available nitrogen on photoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz). Ecotoxicol Environ Saf 70:216–222

    Article  CAS  Google Scholar 

  • Yu XZ, Gu J-D, Huang SZ (2007) Hexavalent chromium induced stress and metabolic responses of in hybrid willows. Ecotoxicology 16:299–309

    Article  CAS  Google Scholar 

  • Yu XZ, Zhou PH, Yang YM (2006) The potential for phytoremediation of iron cyanide complex by willows. Ecotoxicology 15:461–467

    Article  CAS  Google Scholar 

  • Zayed AM, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by CAG HKUST 3/04C from Hong Kong Research Grant Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Dong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, XZ., Gu, JD. & Xing, LQ. Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows. Ecotoxicology 17, 747–755 (2008). https://doi.org/10.1007/s10646-008-0224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0224-y

Keywords

Navigation