Skip to main content
Log in

In vitro and in vivo effects of cadmium on cholinesterases in Nile tilapia fingerlings: implications for biomonitoring aquatic pollution

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Effects of cadmium on in vitro and in vivo cholinesterase (ChE) activities of brain and muscle tissues of Oreochromis niloticus fingerlings were evaluated, considering its potential use in biomonitoring tropical water pollution. Results show that in vitro ChE activities were depressed significantly by millimolar concentration ranges of Cd2+. The IC50 values of Cd2+ on in vitro ChE activity in brain and muscle tissues were 1.56 and 4.31 mM, respectively. Exposure of fish to environmentally relevant concentrations of Cd2+ (5–30 μg l−l) for 28 days evoked only a transient inhibition (21–34%) of in vivo ChE activities. Prior exposure and co-exposure of fish to 15 μg l−1 of Cd2+ enhanced the extent of inhibition of ChE levels induced by the organophosphorous insecticide chlorpyrifos. As high concentrations of cadmium have the potential to depress ChE activities, monitoring of metal levels in water bodies with suspected high levels of metal inputs is necessary to accurately interpret the fish ChE inhibition data in relation to insecticide contaminations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beauvais SL, Jones SB, Parris JT, Brewer SK, Little EE (2001) Cholinergic and behavioural neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Safety 49(1):84–90

    Article  CAS  Google Scholar 

  • Coppage DL, Bradeich E (1976) River pollution by anti-cholinesterase agents. Water Res 10:19–24

    Article  CAS  Google Scholar 

  • Cunha I, Mangas-Ramirez E, Guilhermino L (2007) Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus). Comp Biochem Physiol C Toxicol Pharmacol 145(4):648–657

    Article  CAS  Google Scholar 

  • de La Torre FR, Salibian A, Ferrari L (2000) Biomarker assessment in juvenile Cyprinus carpio exposed to waterborne cadmium. Environ Pollut 109(2):277–282

    Article  Google Scholar 

  • de Souza Dahm KC, Rückert C, Tonial EM, Bonan CD (2006) In vitro exposure of heavy metals on nucleotidase and cholinesterase activities from the digestive gland of Helix aspersa. Comp Biochem Physiol C Toxicol Pharmacol 143(3):316–320

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20:37–45

    Article  CAS  Google Scholar 

  • Garcia-Santos S, Fontainhas-Fernandes A, Wilson JM (2006) Cadmium tolerance in the Nile tilapia (Oreochromis niloticus) following acute exposure: assessment of some ionoregulatory parameters. Environ Toxicol 21:33–46

    Article  CAS  Google Scholar 

  • Gill TS, Tewari H, Pande J (1991) In vivo and in vitro effects of cadmium on selected enzymes in different organs of the fish Barbus conchonius ham (Rosy barb). Comp Biochem Physiol C Comp Pharmacol 100(3):501–505

    Article  CAS  Google Scholar 

  • Gruber SJ, Munn MD (1998) Organophosphate and carbamate insecticides in agricultural waters and cholinesterase inhibition in common carp (Cyprinus carpio). Arch Environ Contam Toxicol 132:117–142

    Google Scholar 

  • Jebali J, Banni M, Guerbej H, Almeida EA, Bannaoui A, Boussetta H (2006) Effect of malathion and cadmium on acetycholinesterase activity and metallothionein levels in the fish Seriola dumerilli. Fish Physiol Biochem 32(1):93–98

    Article  CAS  Google Scholar 

  • Klavins M, Briede A, Rodinov V, Kokorote I, Parele E, Klavina I (2000) Heavy metals in rivers of Lativia. Sci Total Environ 262:175–183

    Article  CAS  Google Scholar 

  • Kozlovskaya VI, Mayer FI, Menzikova OV, Chuyko GM (1993) Cholinesterases of aquatic animals. Rev Environ Contam Toxicol 132:117–142

    CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Méndez-Armenta M, Rios C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358

    Article  Google Scholar 

  • Mukherjee S, Bhattacharya S (1974) Effects of some industrial pollutants on fish brain. Cholinesterase activity. Environ Physiol Biochem 4:226–231

    CAS  Google Scholar 

  • Norrgren L, Pettersson US, Bergquist PA (2000) Environmental monitoring of the Kafae river located in the upper belt Zambia. Bull Environ Contam Toxicol 38:334–341

    Article  CAS  Google Scholar 

  • Pathiratne A, Athauda P (1998) Toxicity of chlorpyrifos and dimethoate to fingerlings of the Nile tilapia, Oreochromis niloticus: Cholinesterase inhibition. Sri Lanka J Aquat Sci 3:77–84

    Google Scholar 

  • Pathiratne A, Chandrasekara LWHU, Seram PKC De (2008) Effects of biological and technical factors on brain and muscle cholinesterases in Nile tilapia, Oreochromis niloticus: implications for biomonitoring neurotoxic contaminations. Arch Environ Contam Toxicol 54(2):309–317

    Article  CAS  Google Scholar 

  • Payne JF, Mathieu A, Melvin W, Fancey LL (1996) Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Mar Pollut Bull 32(2):225–231

    Article  CAS  Google Scholar 

  • Rodriguez-Fuentes G, Gold-Bouchot G (2004) Characterization of cholinesterase activity from differential tissues of Nile tilapia (Oreochromis niloticus). Mar Environ Res 58:505–509

    Article  CAS  Google Scholar 

  • Roesijadi G, Robinson WE (1994) Metal regulation in aquatic animals: mechanisms of uptake, accumulation and release. In: Malins DC, Ostrander GK (eds) Aquatic toxicology: molecular, biochemical and cellular perspectives. Lewis Publishers, CRC Press, pp 387–420

  • Senarathne P, Pathiratne KAS (2007) Accumulation of heavy metals in a food fish Mystus gulio inhabiting Bolgoda Lake Sri Lanka. Sri Lanka J Aquat Sci 12:61–76

    Google Scholar 

  • Senger MR, Rosemberg DB, Rico EP, Arizi MDB, Dias RD, Bogo MR, Bonan CD (2006) In vitro effect of zinc and cadmium on acetylcholinesterase and ectonucleotidase activities in Zebra fish (Danio rerio) brain. Toxicol In vitro 20(6):954–958

    Article  CAS  Google Scholar 

  • Sturm A, Wogram J, Segner H. Liess M (2000) Different sensitivity to organophosphates of acetylcholinesterase and butylcholinesterase from three-spined stickleback (Gasterosteus aculeatus): application in biomonitoring. Environ Toxicol Chem 19(6):1607–1615

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Wijeyaratne WMDN, Pathiratne A (2006) Acetylcholinesterase inhibition and gill lesions in Rasbora caverii an indigenous fish inhabiting rice field associated waterbodies in Sri Lanka. Ecotoxicology 15:609–619

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. K. A. S. Pathiratne, Head of the Department of Chemistry, University of Kelaniya for granting permission to analyze the cadmium levels in water by atomic absorption spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asoka Pathiratne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, K.T.U., Pathiratne, A. In vitro and in vivo effects of cadmium on cholinesterases in Nile tilapia fingerlings: implications for biomonitoring aquatic pollution. Ecotoxicology 17, 725–731 (2008). https://doi.org/10.1007/s10646-008-0221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0221-1

Keywords

Navigation