Skip to main content

Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi

Abstract

Developments in nanotechnology are leading to a rapid proliferation of new materials that are likely to become a source of engineered nanoparticles (ENPs) to the environment, where their possible ecotoxicological impacts remain unknown. The surface properties of ENPs are of essential importance for their aggregation behavior, and thus for their mobility in aquatic and terrestrial systems and for their interactions with algae, plants and, fungi. Interactions of ENPs with natural organic matter have to be considered as well, as those will alter the ENPs aggregation behavior in surface waters or in soils. Cells of plants, algae, and fungi possess cell walls that constitute a primary site for interaction and a barrier for the entrance of ENPs. Mechanisms allowing ENPs to pass through cell walls and membranes are as yet poorly understood. Inside cells, ENPs might directly provoke alterations of membranes and other cell structures and molecules, as well as protective mechanisms. Indirect effects of ENPs depend on their chemical and physical properties and may include physical restraints (clogging effects), solubilization of toxic ENP compounds, or production of reactive oxygen species. Many questions regarding the bioavailability of ENPs, their uptake by algae, plants, and fungi and the toxicity mechanisms remain to be elucidated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    CAS  Article  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B: Bioint 28:313–318

    CAS  Article  Google Scholar 

  • Aiken J (1884) On the formation of small clear spaces in dusty air. Trans Roy Soc Edinburgh 30:337–368

    Google Scholar 

  • Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C-60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem Phys Lett 364:8–17

    CAS  Article  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase - a hydrogen peroxide-scavenging Enzyme in Plants. Physiol Plant 85:235–241

    CAS  Article  Google Scholar 

  • Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR (2007) Inactivation of bacteriophages via photosensitization of fullerol nanoparticles. Environ Sci Technol 41:6627–6632

    CAS  Article  Google Scholar 

  • Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Tox 86:379–387

    CAS  Article  Google Scholar 

  • Biswas P, Wu CY (2005) 2005 Critical review: nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746

    CAS  Google Scholar 

  • Borm PJA (2002) Particle toxicology: from coal mining to nanotechnology. Inhal Toxicol 14:311–324

    CAS  Article  Google Scholar 

  • Boulas P, Kutner W, Jones MT, Kadish KM (1994) Bucky(basket)ball - stabilization of electrogenerated C-60(center-dot-) radical monoanion in water by means of cyclodextrin inclusion chemistry. J Phys Chem 98:1282–1287

    CAS  Article  Google Scholar 

  • Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553

    CAS  Article  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    CAS  Article  Google Scholar 

  • Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang JW (1998) A generalized description of aquatic colloidal interactions: The three-colloidal component approach. Environ Sci Technol 32:2887–2899

    CAS  Article  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotech 21:1166–1170

    CAS  Article  Google Scholar 

  • Chang MCO, Chow JC, Watson JG, Hopke PK, Yi SM, England GC (2004) Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. J Air Waste Manage Assoc 54:1494–1505

    CAS  Google Scholar 

  • Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309:126–134

    CAS  Article  Google Scholar 

  • Chen KL, Mylon SE, Elimelech M (2007a) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23:5920–5928

    CAS  Article  Google Scholar 

  • Chen W, Duan L, Zhu D (2007b) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41:8295–8300

    Google Scholar 

  • Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Water, Air, Soil Pollut 175:241–256

    Article  CAS  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2006) Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant Soil 289:171–185

    CAS  Article  Google Scholar 

  • Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim 14:633–662

    Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity - a review. Plant Soil Environ 53:193–200

    CAS  Google Scholar 

  • Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C (2007) A versatile strategy for quantum dot ligand exchange. J Am Chem Soc 129:482–483

    CAS  Article  Google Scholar 

  • Dunphy Guzman KA, Finnegan MP, Banfield JF (2006a) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693

    CAS  Article  Google Scholar 

  • Dunphy Guzman KA, Taylor MR, Banfield JF (2006b) Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environ Sci Technol 40:1401–1407

    CAS  Article  Google Scholar 

  • Elimelech M, Omelia CR (1990) Effect of particle-size on collision efficiency in the deposition of brownian particles with electrostatic energy barriers. Langmuir 6:1153–1163

    CAS  Article  Google Scholar 

  • Fernandes T, Nielsen H, Burridge T, Stone V (2007) Toxicity of nanoparticles to embryos of the marine macroalgae Fucus serratus. 2nd International Conference on the Environmental Effects of Nanoparticles and Nanomaterials, London, England

  • Ferretti R, Stoll S, Zhang JW, Buffle J (2003) Flocculation of hematite particles by a comparatively large rigid polysaccharide: schizophyllan. J Colloid Interface Sci 266:328–338

    CAS  Article  Google Scholar 

  • Filella M, Buffle J (1993) Factors controlling the stability of submicron colloids in natural-waters. Colloid Surf A-Physicochem Eng Asp 73:255–273

    CAS  Article  Google Scholar 

  • Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4–64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259

    CAS  Article  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    CAS  Article  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    CAS  Article  Google Scholar 

  • Friedlander SK, Pui DYH (2004) Emerging issues in nanoparticle aerosol science and technology. J Nanopart Res 6:313–314

    CAS  Article  Google Scholar 

  • Fujino T, Itoh T (1998) Changes in pectin structure during epidermal cell elongation in pea (Pisum sativum) and its implications for cell wall architecture. Plant Cell Physiol 39:1315–1323

    CAS  Google Scholar 

  • Giammar DE, Maus CJ, Xie LY (2007) Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Env Eng Sci 24:85–95

    CAS  Article  Google Scholar 

  • Gotovac S, Hattori Y, Noguchi D, Miyamoto J, Kanamaru M, Utsumi S, Kanoh H, Kaneko K (2006) Phenanthrene adsorption from solution on single wall carbon nanotubes. J Phys Chem B 110:16219–16224

    CAS  Article  Google Scholar 

  • Gotovac S, Honda H, Hattori Y, Takahashi K, Kanoh H, Kaneko K (2007) Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett 7:583–587

    CAS  Article  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  • Harrison P (ed) (2007) Emerging challenges: nanotechnology and the environment. GEO Year Book 2007. United Nations Environment Programme (UNEP), Nairobi, Kenya, pp 61–68. ISBN 978-92-807-2768-9

    Google Scholar 

  • Heredia A, Guillen R, Jimenez A, Fernandezbolanos J (1993) Plant-cell wall structure. Revista Espanola De Ciencia Y Tecnologia De Alimentos 33:113–131

    CAS  Google Scholar 

  • Hiemstra T, Venema P, Van Riemsdijk WH (1996) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle. J Colloid Interface Sci 184:680–692

    CAS  Article  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    CAS  Article  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurements of airborne particles. Wiley Interscience, New York

    Google Scholar 

  • Hong JL, Otaki M (2006) Association of photosynthesis and photocatalytic inhibition of algal growth by TiO2. J Biosci Bioeng 101:185–189

    CAS  Article  Google Scholar 

  • Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147:265–274

    CAS  Article  Google Scholar 

  • Hu CG, Yang CH, Hu SS (2007) Hydrophobic adsorption of surfactants on water-soluble carbon nanotubes: a simple approach to improve sensitivity and antifouling capacity of carbon nanotubes-based electrochemical sensors. Electrochim 9:128–134

    CAS  Article  Google Scholar 

  • Huang CP, Cha DK, Ismat SS (2005) Progress report: short-term chronic toxicity of photocatalytic nanoparticles to bacteria, algae, and zooplankton. University of Delaware

  • Hug SJ, Sulzberger B (1994) In situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir 10:3587–3597

    CAS  Article  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232

    CAS  Article  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    CAS  Article  Google Scholar 

  • Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    CAS  Article  Google Scholar 

  • Imahori H, Mori Y, Matano Y (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C-Photochem Rev 4:51–83

    CAS  Article  Google Scholar 

  • Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273

    CAS  Article  Google Scholar 

  • Jeong CH, Hopke PK, Chalupa D, Utell M (2004) Characteristics of nucleation and growth events of ultrafine particles measured in Rochester, NY. Environ Sci Technol 38:1933–1940

    CAS  Article  Google Scholar 

  • Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    CAS  Article  Google Scholar 

  • Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260:89–94

    CAS  Article  Google Scholar 

  • Kallay N, Zalac S (2002) Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. J Colloid Interface Sci 253:70–76

    CAS  Article  Google Scholar 

  • Karajanagi SS, Kim DY, Kane RS, Dordick JS (2004) Enzyme-nanotube conjugates as functional nanomaterials. Abstr Pap Am Chem Soc 227:U890–U890

    Google Scholar 

  • Kim SC, Lee DK (2005) Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 80:227–232

    CAS  Article  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med 3:95–101

    CAS  Article  Google Scholar 

  • Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213

    CAS  Article  Google Scholar 

  • Knauer K, Sobek A, Bucheli TD (2007) Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon. Aquat Toxicol 83:143–148

    CAS  Article  Google Scholar 

  • Knox JP (1995) The extracellular-matrix in higher-plants. 4. Developmentally-regulated proteoglycans and glycoproteins of the plant-cell surface. FASEB J 9:1004–1012

    CAS  Google Scholar 

  • Kormann C, Bahnemann DW, Hoffmann MR (1991) Photolysis of chloroform and other organic-molecules in aqueous TiO2 suspensions. Environ Sci Technol 25:494–500

    CAS  Article  Google Scholar 

  • Kostner B (2001) Evaporation and transpiration from forests in Central Europe relevance of patch-level studies for spatial scaling. Meteorol Atmos Physics 76:69–82

    Article  Google Scholar 

  • Kretzschmar R, Sticher H (1997) Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals. Environ Sci Technol 31:3497–3504

    CAS  Article  Google Scholar 

  • Kulmala M (2003) How particles nucleate and grow. Science 302:1000–1001

    CAS  Article  Google Scholar 

  • Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176

    CAS  Article  Google Scholar 

  • Kus M, Gernjak W, Ibanez PF, Rodriguez SM, Galvez JB, Icli S (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale. J Sol Energ Eng-Trans Asme 128:331–337

    CAS  Article  Google Scholar 

  • Kuzma J, VerHage P (2006) Nanotechnology in agriculture and food production - anticipated applications. Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, Washington, DC

    Google Scholar 

  • Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169

    CAS  Article  Google Scholar 

  • Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382

    CAS  Article  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–50

    CAS  Article  Google Scholar 

  • Liu AH, Honma I, Ichihara M, Zhou HS (2006) Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties. Nanotechnol 17:2845–2849

    CAS  Article  Google Scholar 

  • Luetz-Meindl U, Luetz C (2006) Analysis of element accumulation in cell wallattached and intracellular particles of snow algae by EELS and ESI. Micron 37:452–458

    CAS  Article  Google Scholar 

  • Luther GW, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. J Nanopart Res 7:389–407

    CAS  Article  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366

    CAS  Article  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms. Prentice Hall/Pearson Higher Education Group, Upper Saddle River, NJ

    Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    CAS  Article  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    CAS  Article  Google Scholar 

  • Mandal S, Gole A, Lala N, Gonnade R, Ganvir V, Sastry M (2001) Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds. Langmuir 17:6262–6268

    CAS  Article  Google Scholar 

  • Masciangioli T, Zhang WX (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37:102A–108A

    CAS  Google Scholar 

  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health-Part A 67:87–107

    CAS  Article  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269

    CAS  Article  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microb Rev 12:147–179

    CAS  Google Scholar 

  • Metcalfe AM, Stoll S, Burd A (2006) The effect of inhomogeneous stickiness on polymer aggregation. J Colloid Interface Sci 298:629–638

    CAS  Article  Google Scholar 

  • Miao AJ, Quigg A, Schwehr K, Xu C, Santschi P (2007) Engineered silver nanoparticles (ESNs) in coastal marine environments: bioavailability and toxic effects to the phytoplankton Thalassiosira weissflogii. 2nd International conference on the environmental effects of nanoparticles and nanomaterials, 24th 25th September, London UK

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    CAS  Article  Google Scholar 

  • Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382

    CAS  Article  Google Scholar 

  • Morawska L, Thomas S, Gilbert D, Greenaway C, Rijnders E (1999) A study of the horizontal and vertical profile of submicrometer particles in relation to a busy road. Atmos Environ 33:1261–1274

    CAS  Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    CAS  Article  Google Scholar 

  • Munro CH, Smith WE, Garner M, Clarkson J, White PC (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance raman-scattering. Langmuir 11:3712–3720

    CAS  Article  Google Scholar 

  • Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Tot Environ 165:155–164

    CAS  Article  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Kägi R, Odzak N, Sigg L, Behra R (2007) Toxicity mechanisms of silver nanoparticles to Chlamydomonas reinhardtii. 2nd International conference on the environmental effects of nanoparticles and nanomaterials (oral presentation), London, UK

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    CAS  Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    CAS  Article  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang CM, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    CAS  Article  Google Scholar 

  • O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271

    CAS  Article  Google Scholar 

  • Oberdörster G (2007) Nanoparticles and the brain: cause for concern? Amino Acids 33 (3):XXVIII–XXVIII

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Google Scholar 

  • Ojamae L, Aulin C, Pedersen H, Kall PO (2006) IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J Colloid Interface Sci 296:71–78

    Article  CAS  Google Scholar 

  • Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    CAS  Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    CAS  Article  Google Scholar 

  • Pappa A, Franco R, Schoneveld O, Galanis A, Sandaltzopoulos R, Panayiotidis MI (2007) Sulfur-containing compounds in protecting against oxidant-mediated lung diseases. Curr Med Chem 14:2590–2596

    CAS  Article  Google Scholar 

  • Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett 4:703–707

    CAS  Article  Google Scholar 

  • Peller JR, Whitman RL, Griffith S, Harris P, Peller C, Scalzitti J (2007) TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light. J Photochem Photobiol A 186:212–217

    CAS  Article  Google Scholar 

  • Ridley MK, Hackley VA, Machesky ML (2006) Characterization and surface-reactivity of nanocrystalline anatase in aqueous solutions. Langmuir 22:10972–10982

    CAS  Article  Google Scholar 

  • Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106A–112A

    CAS  Google Scholar 

  • Rodriguez-Moya M (2007) Inactivation of virus in water by nanoparticles under UV irradiation. Annual meeting, Salt Lake City, UT, USA

  • Santschi PH (2005) Marine colloids. Wiley

  • Santschi PH, Balnois E, Wilkinson KJ, Zhang JW, Buffle J, Guo LD (1998) Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. Limnol Oceanogr 43:896–908

    CAS  Google Scholar 

  • Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855

    CAS  Article  Google Scholar 

  • Schindler PW, Stumm W (1987) The surface chemistry of oxides, hydroxides and oxide minerals. In: Stumm W (ed) Aquatic surface chemistry. Wiley, New York, pp. 83–110

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  Article  Google Scholar 

  • Science Policy Section (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society & The Royal Academy of Engineering, London, ISBN 0 85403 604 0

  • Sehgal A, Lalatonne Y, Berret JF, Morvan M (2005) Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions. Langmuir 21:9359–9364

    CAS  Article  Google Scholar 

  • Shi JP, Evans DE, Khan AA, Harrison RM (2001) Sources and concentration of nanoparticles (<10 nm diameter) in the urban atmosphere. Atmos Environ 35:1193–1202

    CAS  Article  Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113:947–955

    Article  Google Scholar 

  • Smoluchowski M (1917) Versuch einer mathematischen Theorie de Koagulationkinetic Kolloider Lösungen. Z Phys Chem 92:129

    Google Scholar 

  • Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71:307–317

    CAS  Article  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    CAS  Article  Google Scholar 

  • Stanier CO, Khlystov AY, Pandis SN (2004) Nucleation events during the Pittsburgh air quality study: description and relation to key meteorological, gas phase, and aerosol parameters. Aerosol Sci Tech 38:253–264

    CAS  Article  Google Scholar 

  • Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew Chemie-Int Ed 41:2508–2512

    CAS  Article  Google Scholar 

  • Stone L, Weisburd RSJ (1992) Positive feedback in aquatic ecosystems. Trends Ecol Evol 7:263–267

    Article  Google Scholar 

  • Sugunan A, Melin P, Schnurer J, Hilborn JG, Dutta J (2007) Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater 19:77–77

    CAS  Article  Google Scholar 

  • Sun HW, Zhang XZ, Niu Q, Chen YS, Crittenden JC (2007) Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water, Air, Soil Pollut 178:245–254

    CAS  Article  Google Scholar 

  • Tenhunen JD, Mauser W, Lenz R (eds) (2001) Ecological studies 147: ecosystems approaches to landscpae management in Central Europe. Springer Verlag, Berlin, p 652

    Google Scholar 

  • Terashima M, Nagao S (2007) Solubilization of [60] fullerene in water by aquatic humic substances. Chem Lett 36:302–303

    CAS  Article  Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85

    CAS  Article  Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegr 60:96–102

    CAS  Article  Google Scholar 

  • Wang IC, Tai LA, Lee DD, Kanakamma PP, Shen CKF, Luh TY, Cheng CH, Hwang KC (1999) C-60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J Med Chem 42:4614–4620

    CAS  Article  Google Scholar 

  • Wang Y, Wong JF, Teng XW, Lin XZ, Yang H (2003) “Pulling” nanoparticles into water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of alpha-cyclodextrin. Nano Lett 3:1555–1559

    CAS  Article  Google Scholar 

  • Wang D, Lu J, Lai L, Ni M, Mei WN, Li G, Nagase S, Maeda Y, Akasaka T, Gao Z, Zhou Y (2007) Effects of hole doping on selectivity of naphthalene towards single-wall carbon nanotubes. Comput Math Sci 40:354–358

    CAS  Article  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    CAS  Article  Google Scholar 

  • Wessels JGH (1993) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413

    CAS  Article  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    CAS  Article  Google Scholar 

  • Yamakoshi YN, Yagami T, Fukuhara K, Sueyoshi S, Miyata N (1994) Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc -Chem Commun 4:517–518

    Article  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    CAS  Article  Google Scholar 

  • Yu WW, Chang E, Falkner JC, Zhang JY, Al-Somali AM, Sayes CM, Johns J, Drezek R, Colvin VL (2007) Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129:2871–2879

    CAS  Article  Google Scholar 

  • Yue ZR, Economy J (2005) Nanoparticle and nanoporous carbon adsorbents for removal of trace organic contaminants from water. J Nanopart Res 7:477–487

    CAS  Article  Google Scholar 

  • Zemke-White WL, Clements KD, Harris PJ (2000) Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. J Exp Mar Bio Ecol 245:57–68

    CAS  Article  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5:323–332

    CAS  Article  Google Scholar 

  • Zhang KM, Wexler AS (2004) Evolution of particle number distribution near roadways - Part I: analysis of aerosol dynamics and its implications for engine emission measurement. Atmos Environ 38:6643–6653

    CAS  Article  Google Scholar 

  • Zhang TR, Ge JP, Hu YP, Yin YD (2007a) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7:3203–3207

    CAS  Article  Google Scholar 

  • Zhang XZ, Sun HW, Zhang ZY, Niu Q, Chen YS, Crittenden JC (2007b) Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160–166

    CAS  Article  Google Scholar 

  • Zhao XU, Li ZW, Chen Y, Shi LY, Zhu YF (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A-Chem 268:101–106

    CAS  Article  Google Scholar 

  • Zheng L, Hong FS, Lu SP, Liu C (2005) Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res 104:83–91

    CAS  Article  Google Scholar 

  • Zhu YF, Hinds WC, Kim S, Shen S, Sioutas C (2002a) Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 36:4323–4335

    CAS  Article  Google Scholar 

  • Zhu YF, Hinds WC, Kim S, Sioutas C (2002b) Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manage Assoc 52:1032–1042

    Google Scholar 

  • Zhu SQ, Oberdörster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C-60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Richard Handy for the invitation to write this paper, and two anonymous reviewers, whose comments improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Navarro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Navarro, E., Baun, A., Behra, R. et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17, 372–386 (2008). https://doi.org/10.1007/s10646-008-0214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0214-0

Keywords

  • Toxicity
  • Nanoparticles
  • Fullerenes
  • Carbon nanotubes
  • Carbon black
  • Silver nanoparticles
  • TiO2
  • Organic matter