Skip to main content
Log in

Effect of linear alkylbenzene sulfonates on the growth of aerobic heterotrophic cultivable bacteria isolated from an agricultural soil

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

An enrichment culture technique was used to isolate soil bacteria capable of growing in the presence of two different concentrations of linear alkylbenzene sulfonates (LAS) (10 and 500 μg ml−1). Nine bacterial strains, representatives of the major colony types of aerobic heterotrophic cultivable bacteria in the enriched samples, were isolated and subsequently identified by PCR-amplification and partial sequencing of the 16S rRNA gene. Amongst the isolates, strains LAS05 (Pseudomonas syringae), LAS06 (Staphylococcus epidermidis), LAS07 (Delftia tsuruhatensis), LAS08 (Staphylococcus epidermidis) and LAS09 (Enterobacter aerogenes), were able to grow in pure culture in dialysed soil media amended with LAS (50 μg ml−1). The three Gram-negative strains grew to higher cell numbers in the presence of 50 μg ml−1 of LAS, compared to LAS-unamended dialysed soil medium, and were selected for further testing of their ability to use LAS as carbon source. However, HPLC analysis of culture supernatants showed that the three strains can tolerate but not degrade LAS when grown in pure cultures. A higher concentration of soluble phosphates was recorded in dialysed soil media amended with LAS (50 μg ml−1) compared to unamended control media, suggesting an effect of the surfactant that enhanced the bioavailability of P from soil. The presence of LAS at a concentration of 50 μg ml−1 had an important impact on growth of selected aerobic heterotrophic soil bacteria, a deleterious effect which may be relevant for the normal function and evolution of agricultural soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  • APHA (2001) Standard methods for the examination of water and wastewater, 20th edn. Clesceri LS, Greenberg AE, Eaton AD (eds) American Public Health Association, Washington DC, USA

  • Bergey´s Manual of Systematic Bacteriology (2005) 2nd edn. Garrity GM (ed) Springer, NY, USA

  • Berna JL, Ferrer J, Moreno A, Prats D, Ruiz F (1989) The fate of LAS in the environment. Tenside Surf Det 26:101–107

    CAS  Google Scholar 

  • Berth P, Jeschike P (1989) Consumption and fields of application of LAS. Tenside Surf Det 26:75–79

    CAS  Google Scholar 

  • Brandt KK, Hesseløe M, Roslev P, Henriksen K, Sørensen J (2001) Toxic effects of linear alkylbencene sulfonate on metabolic activity, growth rate and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microbiol 67:2489–2498

    Article  CAS  Google Scholar 

  • Brandt KK, Pedersen A, Sorensen J (2002) Solid-phase contact assay that uses a luxmarked nitrosomonas europea reported strain to estimate toxicity of bioavailale linear alkylbenzene sulfonate in soil. Appl Environ Microbiol 68:3502–3508

    Article  CAS  Google Scholar 

  • Brandt KK, Krogh PH, Sørensen J (2003) Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate: a field study. Environ. Toxicol Chem 22:821–829

    Article  CAS  Google Scholar 

  • Bremmer JM (1965) Inorganic forms of nitrogen. Agronomy 9:1179–1237

    Google Scholar 

  • De Wolf W, Feijtel T (1998) Terrestrial risk assessment for linear alkylbenzene sulphonate (LAS) in sludge amended soils. Chemosphere 36:1319–1343

    Article  Google Scholar 

  • Elsgaard L, Petersen S, Debozs K (2001a) Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environ Toxicol Chem 20:1656–1663

    Article  CAS  Google Scholar 

  • Elsgaard L, Petersen S, Debozs K, Kristiansen IB (2001b) Effects of linear alkylbenzene sulfonates (LAS) on soil microbial ecology. Tenside Surf Det 38:94–97

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • González-López J, Vela GR (1981) True morphology of the Azotobacteracea-filterable bacteria. Nature 289:588–590

    Article  Google Scholar 

  • Hartmann L (1966) Effects of surfactants on soil bacteria. Bull Environ Cont Toxicol 1:219–224

    Article  CAS  Google Scholar 

  • Hislop EC, Barnaby VM, Burchill RT (1977) Aspects of the biological activity of surfactants that are potential eradicants of apple mildew. Ann Appl Biol 87:29–39

    Article  CAS  Google Scholar 

  • Jacobsen AM, Mortensen GK, Hansen HCB (2004) Degradation and mobility of linear alkylbenzene sulfonate and nonylphenol in sludge-amended soil. J Environ Qual 33:232–240

    CAS  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  CAS  Google Scholar 

  • Jensen J (1999) Fate and effects of linear alkylbenzene sulphonates (LAS) in the terrestrial environment. Sci Total Environ 226:93–111

    Article  CAS  Google Scholar 

  • Jensen J, Jepsen SE (2005) The production, use and quality of sewage sludge in Denmark. Waste Manag 25:239–247

    Article  CAS  Google Scholar 

  • Jensen J, Lokke H, Holmstrup M, Krog PH, Elsgaard L (2001) Effects and risks assessment of linear alkyl-benzene sulfonates in agricultural soils. Probabilistic risk assessment of linear alkylbenzene sulfonates in sludge-amended soils. Environ Toxicol Chem 20:1690–1697

    Article  CAS  Google Scholar 

  • Khleifat KM (2006) Biodegradation of linear alkylbenzene sulfonate by a two-member facultative anaerobic bacterial consortium. Enzyme Microb Tech 39:1030–1035

    Article  CAS  Google Scholar 

  • Knaebel DB, Federle TW, Vestal JR (1990) Mineralization of LAS and LAE in 11 contrasting soils. Environ Toxicol Chem 9:981–988

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Arizona State University, Tempe, Arizona, USA

    Google Scholar 

  • Lee BKH (1970) The effect of anionic and non-anionic detergents on soil microfungi. Can J Bot 48:583–589

    Article  CAS  Google Scholar 

  • López L, Pozo C, Calvo C, Juárez B, Martínez-Toledo MV, González-López J (2005) Identification of bacteria isolated from an oligotrophic lake with pesticides removal capacities. Ecotoxicology 14:299–312

    Article  CAS  Google Scholar 

  • Marcomini A, Capel PD, Lichtensteiger TH, Brunner PH, Giger W (1989) Behaviour of aromatic surfactants and PCBs in sludge-treated soil and landfills. J Environ Qual 18:523–528

    Article  CAS  Google Scholar 

  • Natural Resources Conservation Service (1999) Soil taxonomy, a basic system of soil classification for making and interpreting soil surveys, 2nd edn. U.S. Department of Agriculture, Washington, DC, USA

    Google Scholar 

  • Neefs J, Van de Peer Y, Hendriks L, De Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acid Res 18:2237–2242

    CAS  Google Scholar 

  • Nielsen KB, Brandt KK, Jacobsen AM, Mortensen G, Sørensen J (2004) Influence of soil moisture on linear alkylbenzene sulfonate-induced toxicity in ammonia-oxidizing bacteria. Environ Toxicol Chem 23:363–370

    Article  CAS  Google Scholar 

  • Nimer M, Ballesteros O, Navalón G, Crovetto C, Verge C, López I, Berna JL, Vílchez JL (2007) New simple treatment for determination of linear alkylbenzene sulfonate (LAS) in agricultural soil by liquid chromatography with fluorescence detection. Anal Bioanal Chem 387:2175–2184

    Article  CAS  Google Scholar 

  • Olsen SR, Dean LA (1965) Phosphorous. In: Black CA et al (ed) Methods of soil chemical analysis, Part 2. Agronomy, vol 9. American Society of Agronomy, Inc., Madison, Wiscosin, USA pp 1035–1049

  • Painter HA (1992) Anionic surfactants. Handbook Environ Chem 3:2–88

    Google Scholar 

  • Pozo C, Rodelas B, Calvo C, Martínez-Toledo MV, González-López J (2003) Linear alkylbenzene sulfonates (LAS) on soil microbial activity. Food Agric Environ 1:348–350

    CAS  Google Scholar 

  • Pratt PF (1954) Potassium release from exchangeable and non-exchangeable forms in soils. Ohio Agric Exp Stn Resour Bull 47:747

    Google Scholar 

  • Rodier J (1989) Anàlisis de aguas. Aguas naturales, aguas residuales, agua de mar. Ediciones Omega SA. Barcelona, Spain, pp 186–191

  • Schwuger MJ, Bartnik FG (1980) Interaction of anionic surfactants with proteins, enzymes and membranes. In: Gloxhuber C (ed) Anionic surfactants-biochemistry, toxicology, dermatology. Marcel Dekker, New York, USA, pp 1–49

    Google Scholar 

  • Toledo FL, Calvo C, Rodelas B, González-López J (2006) Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic removal capacities. Syst Appl Microbiol 29:244–252

    Article  CAS  Google Scholar 

  • Van Ginkel CG (1996) Complete degradation of xenobiotics surfactants by consortia of aerobic microorganisms. Biodegradation 7:151–164

    Article  Google Scholar 

  • Vinther FP, Mortensen G, Elsgaard L (2003) Effects of linear alkylbenzane sulfonates on functional diversity of microbial communities in soil. Environ Toxicol Chem 22:35–39

    Article  CAS  Google Scholar 

  • Vinuesa P, Rademaker JLW, De Bruijn FJ, Werner D (1998) Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S−23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl Environ Microbiol 64:2096–2104

    CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

  • Wilke BM (1997) Effects of non-pesticide organic pollutants on soil microbial activity. Adv Geoecol 30:117–132

    CAS  Google Scholar 

  • Ying GG (2006) Fate, behaviour and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministerio de Educación y Ciencia (MEC), as part of Project Reference PPQ2003-07978-V02-02 (Programa Nacional de I+D). B. Rodelas was supported by Programa Ramón y Cajal (MEC, Spain). C. Pozo was granted by Programa “Retorno de Doctores”, Consejería de Educación y Ciencia, Junta de Andalucía, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús González-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Peinado, M., González-López, J., Rodelas, B. et al. Effect of linear alkylbenzene sulfonates on the growth of aerobic heterotrophic cultivable bacteria isolated from an agricultural soil. Ecotoxicology 17, 549–557 (2008). https://doi.org/10.1007/s10646-008-0212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0212-2

Keywords

Navigation