Skip to main content
Log in

Community and ecosystem responses to a pulsed pesticide disturbance in freshwater ecosystems

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Pesticides have been shown to be detrimental to key groups of freshwater organisms including cladocerans, odonates, and amphibians. However, less is known about the response of freshwater communities and ecosystems to pesticide disturbances as they occur in nature. Using outdoor aquatic mesocosms, we assembled identical and diverse replicate freshwater plankton food webs obtained from an adjacent pond. We established three pesticide treatments consisting of pulses of a common pesticide Sevin® with the active ingredient carbaryl, at concentrations of 0.1, 1 and 20 μg carbaryl/ml, and a pesticide-free control treatment. We monitored the response of microbial, phytoplankton, and zooplankton communities in addition to oxygen concentrations. Carbaryl concentrations peaked shortly after Sevin application and degraded quickly and treatment differences were undetectable after 30 days. Zooplankton richness, diversity, abundance, and oxygen concentrations all decreased in pulsed treatments, while phytoplankton and microbial abundance increased. Zooplankton composition in the high pesticide treatment consisted primarily of rotifers as compared to dominance by copepods in the other three treatments. While many of the community and ecosystem properties showed signs of recovery within 40 days after the pulsed pesticide disturbance, important and significant differences remained in the microbial, phytoplankton and zooplankton communities after the pesticide degraded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abell R et al (2000) Freshwater ecoregions of North America: a conservation assessment. Island Press, Washington

    Google Scholar 

  • Beyers DW et al (1995) Effects of rangeland aerial application of Sevin-4-oil(R) on fish and aquatic invertebrate drift in the Little Missouri River, North-Dakota. Arch Environ Contam Toxicol 28:27–34

    Article  CAS  Google Scholar 

  • Bondarenko S et al (2004) Persistence of selected organophosphate and carbamate insecticides in waters from a coastal watershed. Environ Toxicol Chem 23:2649–2654

    Article  CAS  Google Scholar 

  • Braman SK et al (1997) Assessment of pesticide use by commercial landscape maintenance and lawn care firms in Georgia. J Entomol Sci 32:403–411

    Google Scholar 

  • Brewer SK, Atchison GJ (1999) The effects of chlorpyrifos on cholinesterase activity and foraging behavior in the dragonfly, Anax junius (Odonata). Hydrobiologia 394:201–208

    Article  CAS  Google Scholar 

  • Chang K et al (2005) Impact of pesticide application on zooplankton communities with different densities of invertebrate predators: an experimental analysis using small-scale mesocosms. Aquat Toxicol 72:373–382

    Article  CAS  Google Scholar 

  • Clarke KR (1999) Nonmetric multivariate analysis in community-level ecotoxicology. Environ Toxicol Chem 18:118–127

    Article  CAS  Google Scholar 

  • Doddamani HP, Ninnekar HZ (2001) Biodegradation of carbaryl by a Micrococcus species. Curr Microbiol 43:69–73

    Article  CAS  Google Scholar 

  • Dodson SI, Hanazato T (1995) Commentary on effects of anthropogenic and natural organic-chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environ Health Perspect 103:7–11

    Article  CAS  Google Scholar 

  • Duarte CM, Agusti S (1998) The CO2 balance of unproductive aquatic ecosystems. Science 281:234–236

    Article  CAS  Google Scholar 

  • Hanazato T (1991) Effects of repeated application of carbaryl on zooplankton communities in experimental ponds with or without the predator Chaoborus. Environ Pollut 74:309–324

    Article  CAS  Google Scholar 

  • Hanazato T, Yasuno M (1987) Effects of a carbamate insecticide, carbaryl, on the summer phytoplankton and zooplankton communities in ponds. Environ Pollut 48:145–159

    Article  CAS  Google Scholar 

  • Hardersen S, Frampton CM (1999) Effects of short term pollution on the level of fluctuating asymmetry—a case study using damselflies. Entomol Exp Appl 92:1–7

    Article  CAS  Google Scholar 

  • Hardersen S, Wratten SD (1998) The effects of carbaryl exposure of the penultimate larval instars of Xanthocnemis zealandica on emergence and fluctuating asymmetry. Ecotoxicology 7:297–304

    Article  CAS  Google Scholar 

  • Havens K (1995) Insecticide (carbaryl, 1-napthyl-N-methyl carbamate) effects on a fresh-water plankton community—zooplankton size, biomass, and algal abundance. Water Air Soil Pollut 84:1–10

    Article  CAS  Google Scholar 

  • Jepson PC (2001) Uses and effects of pesticides. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 509–522

    Google Scholar 

  • Leibold MA, Norberg J (2004) Biodiversity in metacommunities: plankton as complex adaptive systems? Limnol Oceanogr 49:1278–1289

    Google Scholar 

  • Loreau M, Mouquet N (1999) Immigration and the maintenance of local species diversity. Am Nat 154:427–440

    Article  Google Scholar 

  • Ma JY et al (2006) Differential responses of eight cyanobacterial and green algal species, to carbamate insecticides. Ecotoxicol Environ Saf 63:268–274

    Article  CAS  Google Scholar 

  • McCune B, Grace J (2002) Analysis of ecological communities. MJM Software Design, Gleneden Beach

    Google Scholar 

  • Mora BR et al (2000) Relationship between toxicokinetics of carbaryl and effect on acetylcholinesterase activity in Pomacea patula snail. Ecotoxicol Environ Saf 46:234–239

    Article  CAS  Google Scholar 

  • Peterson JL et al (2001a) Effect of varying pesticide exposure duration and concentration on the toxicity of carbaryl to two field-collected stream invertebrates, Calineuria californica (Plecoptera: Perlidae) and Cinygma sp (Ephemeroptera: Heptageniidae). Environ Toxicol Chem 20:2215–2223

    Article  CAS  Google Scholar 

  • Peterson JL et al (2001b) A test system to evaluate the susceptibility of Oregon, USA, native stream invertebrates to triclopyr and carbaryl. Environ Toxicol Chem 20:2205–2214

    Article  CAS  Google Scholar 

  • Pusey BJ et al (1994) Effects of a pulsed application of chlorpyrifos on macroinvertebrate communities in an outdoor artificial stream system. Ecotoxicol Environ Saf 27:221–250

    Article  CAS  Google Scholar 

  • Relyea RA (2005) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627

    Article  Google Scholar 

  • Relyea RA (2006) The effects of pesticides, pH, and predatory stress on amphibians under mesocosm conditions. Ecotoxicology 15:503–511

    Article  CAS  Google Scholar 

  • Ricciardi A, Rasmussen JB (1999) Extinction rates of North American freshwater fauna. Conserv Biol 13(5):1220–1222

    Article  Google Scholar 

  • Sharma VK et al (1990) High performance liquid chromatographic method for the analysis of organophosphorus and carbamate pesticides. Forensic Sci Int 48:21–25

    Article  CAS  Google Scholar 

  • Strait JR et al (1991) Sensitive high-performance liquid chromatographic analysis for toxicological studies with carbaryl. J Agric Food Chem 39:710–713

    Article  CAS  Google Scholar 

  • Strayer DL (2006) Challenges for freshwater invertebrate conservation. J North Am Benthol Soc 25:271–287

    Article  Google Scholar 

  • Weber FH, Rosenberg FA (1984) Interactions of carbaryl with estuarine bacterial communities. Microb Ecol 10:257–269

    Article  CAS  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992

    CAS  Google Scholar 

  • Wong DCL et al (2003) Multivariate analyses of invertebrate community responses to a C(12–15)AE-3S anionic surfactant in stream mesocosms. Aquat Toxicol 62:105–117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Ohio Wesleyan University Summer Science program and the Kraus research fellowship program for funding, and the late Dr. and Mrs. Kraus for donating the Kraus Nature Preserve to Ohio Wesleyan University. We are grateful to Matt Bruns, Kasey Schurtz, Amanda Wibley, and Thomas and Cheryl and Courtney DeVanna for field assistance. We thank Laurie Anderson and two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Downing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downing, A.L., DeVanna, K.M., Rubeck-Schurtz, C.N. et al. Community and ecosystem responses to a pulsed pesticide disturbance in freshwater ecosystems. Ecotoxicology 17, 539–548 (2008). https://doi.org/10.1007/s10646-008-0211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0211-3

Keywords

Navigation