Skip to main content
Log in

Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Toxic cyanobacteria occur worldwide in aquatic ecosystem, and their toxins have adverse effects on most aquatic organisms. However, some species of green algae can grow and flourish at environmentally relevant concentrations of microcystins (MCYSTs). Therefore, the present study aimed to investigate the possible adaptive response of two representatives of green algae, Chlorella vulgaris and Scenedesmus quadricauda to these toxins. Growth and antioxidative biomarkers of these algae were studied over a 14-day exposure to different concentrations of pure microcystin-LR (MCYST-LR) and crude MCYSTs. Both pure and crude MCYSTs significantly decreased the growth of the two algae compared to control cultures during the first 3 days of incubation. Meanwhile, increases in glutathione-S-transferase (GST), glutathione peroxidase (GPX) and lipid peroxidation, and decreases in glutathione (GSH) were also observed in toxin-treated cultures. All growth and biochemical variables were restored to control levels after 3 days of incubation and remained at levels near to those of control cultures during the remaining period of experiment. The changes in these variables correlated with polysaccharide contents of toxin-treated cultures, indicating the involvement of these polysaccharides in protecting the algal cells against MCYST-induced oxidative stress. The results of in vitro assay of antioxidant activity revealed that these polysaccharides had different activities, depending on their sulfate contents. This study provides an evidence for the first time that polysaccharides play a protective role in some microalgae against MCYST-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allocati N, Favaloro B, Fasulli M, Alexeyev MF, DiIlio C (2003) Proteus mirabilis glutathione S-transferase B1-1 is involved in protective mechanisms against oxidative and chemical stresses. Biochem J 373:305–311

    Article  CAS  Google Scholar 

  • Azam F, Smith DC (1991) Bacterial influence on the variability in the ocean’s biogeochemical state: a mechanistic view. In: Demers S (ed) NATO ASI series, Vol G27, particle analysis in oceanography. Springer-Verlag, Berlin, pp 213–236

    Google Scholar 

  • Babica P, Blaha L, Marsalek B (2006) Exploring the natural role of microcystins—A review of effects on photoautotrophic organisms. J Phycol 42:9–20

    Article  Google Scholar 

  • Babica P, Hilscherova K, Bartova K, Blaha L, Marsalek B (2007) Effects of dissolved microcystins on growth of planktoinc photoautotrophs. Phycologia 46:137–142

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Carmichael WW (1997) The cyanotoxins. Adv Bot Res 27:211–256

    CAS  Google Scholar 

  • Carmichael WW, An J (1999) Using of enzyme linked immunosorbent assay (ELISA) and apoprotein phosphatase inhibition assay (PPIA) for the detection of MCYST and nodularin. J Nat Toxins 7:377–385

    Article  CAS  Google Scholar 

  • Chen Y, Xie M-Y, Nie S-P, Li C, Wang Y-X (2008) Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 107:231–241

    Article  CAS  Google Scholar 

  • Choudhary M, Jetley UK, Khan MA, Zutshi S (2007) Effect of heavy metal stresson praline, malodialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Safe 66:204–209

    Article  CAS  Google Scholar 

  • Christoffersen K (1996) Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia 35:42–50

    Google Scholar 

  • Christoffersen K, Lyck S, Winding A (2002) Microbial activity and bacterial community structure during degradation of microcystins. Aquat Microb Ecol 27:125–136

    Article  Google Scholar 

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    Article  CAS  Google Scholar 

  • De Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccahride-producing cyanobacteria. Biodegradation 18:181–187

    Article  CAS  Google Scholar 

  • De Vos CHR, Schat H (1991) Free radical and heavy metal tolerance. In: Rozema J, Verkleji JAC (eds) Ecological response to environmental stress. Kluwer, Dordrecht, pp 22–30

    Google Scholar 

  • Delaney JM, Wilkins RM (1995) Toxicity of microcystin-LR isolated from Microcystis aeruginosa against various insect species. Toxicon 33:771–778

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugar and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Engström J, Viherluoto M, Viitasalo M (2001) Effects of toxic and non-toxic cyanobacteria on grazing, zooplanktivory and survival of the mysid shrimp Mysis mixta. J Exp Mar Biol Ecol 257:269–280

    Article  Google Scholar 

  • Falconer I, Bartram J, Chorus I, Kuiper-Goodman T, Utkilen H, Burch M, Codd G (1999) Safe levels and safe practices. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. FN Spon Publishers, London/New York

    Google Scholar 

  • Gaur JP, Rai LC (2001) Heavy metal tolerance in algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. Springer-Verlag, Berlin, pp 363–388

    Google Scholar 

  • Giroldo D, Ortolano PC, Vieira AAH (2007) Bacteria–algae association in batch cultures of phytoplankton from a tropical reservoir: the significance of algal carbohydrates. Freshw Biol 52:1281–1289

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  CAS  Google Scholar 

  • Harada K-I, Tsuji K (1998) Persistence and decomposition of hepatotoxic MCYSTs produced by cyanobacteria in natural environment. J Toxicol Toxicon Rev 61:385–403

    Google Scholar 

  • Health RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  Google Scholar 

  • Hu Z, Liu Y, Li D, Dauta A (2005) Growth and antioxidant system of the cyanobacterium Synechococcus elongates in response to microcystin-RR. Hydrobiol 534:23–39

    Article  CAS  Google Scholar 

  • Hu Q, Pan B, Xu J, Sheng J, Shi Y (2006) Effects of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extracts. J Food Eng 80:997–1001

    Article  CAS  Google Scholar 

  • Janczyk P, Franke H, Souffrant WB (2007) Nutritional value of Chlorella vulgaris: effects of ultrasonication and electroporation on digestibility in rats. Anim Feed Sci Technol 132:163–169

    Article  CAS  Google Scholar 

  • Kallenbork E, Herndl GJ (1992) Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. IV. Dissolved nutrients and the autotrophic community associated with marine snow. Mar Ecol Prog Ser 87:147–159

    Article  Google Scholar 

  • Kuo JM, Yeh DB, Pan BS (1999) Rapid photometric assay evaluating antioxidant activity in edible plant material. J Agr Food Chem 47:3206–3209

    Article  CAS  Google Scholar 

  • Lawton LA, Robertson PKJ, Cornish BJPA, Marr IL, Jaspars M (2003) Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J Catalysis 213:109–113

    Article  CAS  Google Scholar 

  • Lichtenthaller HK, Wellbum AR (1985) Determination of total carotenoids and chlorophylls A and B of leaf in different solvents. Biol Soc Trans 11:591–592

    Google Scholar 

  • Liu Y, Song L, Li X, Liu T (2002) The toxic effects of microcystin-LR on embryolarvaland juvenile development of loach Miguruns mizolepis Gunthe. Toxicon 40:395–399

    Article  Google Scholar 

  • Mitrovic SM, Alis O, Furrey A, James KJ (2005) Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffa arrhiza and the filamentous green alga Cladophora fracta. Ecotoxicol Environ Safe 61:345–352

    Article  CAS  Google Scholar 

  • Mohamed ZA, Carmichael WW, Hussein AA (2003) Estimation of microcystins in the fresh water fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18:137–141

    Article  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (1998) Cu-induced oxidative stress in Scenedesmus bijugatus: protective role of free radical scavengers. Bull Environ Contam Toxicol 61:623–628

    Article  CAS  Google Scholar 

  • Palíková M, Krejeci R, Hilscherová K, Babica P, Navrátil S, Kopp R, Bláha L (2007) Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.). Aquat Toxicol 81:312–318

    Article  CAS  Google Scholar 

  • Peters LD, Livingstone DR (1996) Antioxidant enzyme activities in embryonic and early larval stages of turbot. J Fish Biol 49:986–997

    Article  CAS  Google Scholar 

  • Pflugmacher S (2002) Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ Toxicol 17:407–413

    Article  CAS  Google Scholar 

  • Pflugmacher S (2004) Promotion of oxidative stress in C. demersum due to exposure to cyanobacterial toxin. Aquat Toxicol 3:169–178

    Article  CAS  Google Scholar 

  • Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA, Steinberg CEW (1998) Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxification. Biochim Biophys Acta 1425:527–533

    CAS  Google Scholar 

  • Pietsch C, Wiegand C, Ame MV, Nicklisch A, Wunderlin D, Pflumacher S (2001) The effects of cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environ Toxicol 16:535–542

    Article  CAS  Google Scholar 

  • Pinho GLL, da Rosa CM, Yunes JS, Luquet CM, Bianchini A, Monserrat JM (2003) Toxic effects of microcystins in the hepatopancreas of the estuarine crab Chasmagnathus granulatus (Decapoda, Grapsidae). Comp Biochem Physiol C: Toxicol Pharmacol 135:459–468

    Article  CAS  Google Scholar 

  • Prieto AL, Jos A, Pichardo S, Moreno I, Cameán AM (2006) Differential oxidative stress responses to microcystins LR and RR in intraperitoneally exposed tilapia fish (Oreochromis sp.). Aquat Toxicol 77:314–321

    Article  CAS  Google Scholar 

  • Qi H, Zhang Q, Zhao T, Chen R, Zhang H, Niu X, Li Z (2005) Antioxidant activity of different sulfate content derivatives of polysaccharides extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 37:195–199

    Article  CAS  Google Scholar 

  • Real M, Munoz IH, Guasch H, Navarro E, Sabater S (2003) The effect of copper exposure on a simple aquatic food chain. Aquat Toxicol 63:283–291

    Article  CAS  Google Scholar 

  • Rohtlack T, Dittmann E, Borner T, Christoffersen K (2001) Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Appl Environ Microbiol 67:3523–3529

    Article  Google Scholar 

  • Sabater C, Carrasco JM (2001) Effects of pyridaphenthion on growth of five freshwater species of phytoplankton. A laboratory study, Chemosphere 44:1775–1781

    Article  CAS  Google Scholar 

  • Saqrane S, El Ghazali I, Ouahid Y, El Hassni M, El Hadrami I, Bouarab L, del Campo FF, Oudra B, Vasconcelos V (2007) Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: Microcystin accumulation, detoxication and oxidative stress induction. Aquat Toxicol 83:284–294

    Article  CAS  Google Scholar 

  • Sedmak B, Elersek T (2006) Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb Ecol 51:508–515

    Article  CAS  Google Scholar 

  • Sedmak B, Kosi G (1998) The role of microcystins in heavy cyanobacterial bloom formation. J Plankton Res 20:691–708

    Article  CAS  Google Scholar 

  • Shi Y, Sheng J, Yang F, Hu Q (2007) Purification and identification of polysaccharide from Chlorella pyrenoidosa. Food Chem 103:101–105

    Article  CAS  Google Scholar 

  • Smith JL, Haney JF (2006) Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus) Toxicon 48:580–589

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M., Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  Google Scholar 

  • Storey KB (1995) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:1715–1733

    Google Scholar 

  • Tannin-Spitz T, Bergman M, van-Moppes D, Grossman S (2005) Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J Appl Phycol 17:215–222

    Article  CAS  Google Scholar 

  • Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 62:538–544

    Article  CAS  Google Scholar 

  • Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review. Toxicol Appl Pharmacol 203:201–218

    Article  CAS  Google Scholar 

  • Weigand C, Peuthert A, Pflugmacher S, Carmeli S (2002) Effects of microcin SF608 and microcystin-LR, two cyanobacterial compounds produced by Microcystis sp. on aquatic organisms. Environ Toxicol 17:400–406

    Article  CAS  Google Scholar 

  • Williams WJ (1982) Determination of anions: Handbook. Chimia, Moscow, p 519

    Google Scholar 

  • Xue CH, Fang Y, Lin H, Chen L, Li ZJ, Deng D, Lu CX (2000) Chemical characters and antioxidant properties of sulfated polysaccharides from Laminaria japonia. J Appl Phycol 13:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, Z.A. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology 17, 504–516 (2008). https://doi.org/10.1007/s10646-008-0204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0204-2

Keywords

Navigation