Skip to main content
Log in

Endocrine disruption in nematodes: effects and mechanisms

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This paper reviews the current knowledge on endocrine disruption in nematodes. These organisms have received little attention in the field of ecotoxicology, in spite of their important role in aquatic ecosystems. Research on endocrine regulation and disruption in nematodes, especially the more recent studies, concentrate mainly on one species, Caenorhabditis elegans. Although an endocrine system is not known in nematodes, there is evidence that many processes are regulated via hormonal pathways. As vertebrate hormones, such as steroids, may have endocrine functions in nematodes as well, endocrine disrupting chemicals (EDCs) defined for vertebrates may also be able to influence nematodes. The studies that are reviewed here, and own data showed that potential EDCs can affect nematodes on all organizational levels, from molecules to communities. It is concluded that nematodes, notably its prominent species C. elegans, are a promising organism group for the development of biomonitoring tools, provided that more mechanistic evidence is gathered on hormonal processes within these animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguinaldo AM, Turbeville JM, Linford JM, Rivera MC, Gary JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, insects, and other moulting animals. Nature 387:489–493

    CAS  Google Scholar 

  • Antebi A, Yeh W-H, Tait D, Hedgecock EM, Riddle DL (2000) daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 14:1512–1527

    CAS  Google Scholar 

  • Austen MC, McEvoy AJ (1997) Experimental effects of tributyltin (TBT) contaminated sediment on a range of meiobenthic communities. Environ Pollut 96:435–444

    CAS  Google Scholar 

  • Beare MH (1997) Fungal and bacterial pathways of organic matter decomposition and nitrogen mineralization in arable soil. In: Brussaard L, Ferrara-Cerrato R (eds) Soil ecology in sustainable agricultural systems. Lewis Publisher, Boca-Raton, pp 37–70

    Google Scholar 

  • Beier S, Bolley M, Traunspurger W (2004) Predator–prey interactions between Dugesia gonocephala and free-living nematodes. Freshw Biol 49:77–86

    Google Scholar 

  • Bennie DT (1999) Review of the environmental occurrence of alkylphenols and alkylphenolethoxylates. Water Qual Res J Can 43:79–122

    Google Scholar 

  • Bottjer KP, Weinstein PP, Thompson MJ (1985) Effects of azasteroid on growth, development and reproduction of the free-living nematodes Caenorhabditis briggsae and Panagrellus redivivus. Comp Biochem Physiol B 82:99–106

    CAS  Google Scholar 

  • Calabrese EJ, McCarthy ME, Kenyon E (1987) The occurrence of chemically induced hormesis. Health Phys 52:531–541

    Article  CAS  Google Scholar 

  • Carmi I, Kopczynski JB, Meyer BJ (1998) The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex. Nature 396:168–173

    CAS  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Google Scholar 

  • Chitwood DJ (1999) Biochemistry and function of nematode steroids. Crit Rev Biochem Mol Biol 34:273–284

    CAS  Google Scholar 

  • Chitwood DJ, Feldlaufer MF (1990) Ecdysteroids in axenically propagated Caenorhabditis elegans and culture medium. J Nematol 22:598–607

    CAS  Google Scholar 

  • Chitwood DJ, Lusby WR, Lozano R, Thompson MJ, Svoboda MA (1984) Sterol metabolism in the nematode Caenorhabditis elegans. Lipids 19:500–506

    CAS  Google Scholar 

  • Cleator M, Delves CJ, Howells RE, Rees HH (1987) Identity and tissue localization of free and conjugated ecdysteroids in adults of Dirofilaria immitis and Ascaris suum. Mol Biochem Parasitol 25:93–105

    CAS  Google Scholar 

  • Coull BC, Greenwood JG, Fielder DR, Coull BA (1995) Subtropical Australian juvenile fish eat meiofauna: experiments with winter whiting Sillago maculata and observations on other species. Mar Ecol Prog Ser 125:13–19

    Google Scholar 

  • Custodia N, Won SJ, Novillo A, Wieland M, Li C, Callard IP (2001) Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann NY Acad Sci 948:32–42

    Article  CAS  Google Scholar 

  • Davey KG (1966) Neurosecretion and molting in some parasitic nematodes. Am Zool 6:243–249

    CAS  Google Scholar 

  • Davey KG (1971) Molting in parasitic nematodes, Phocanema decipiens. VI. The mode of action of insect juvenile hormone and farnesyl ether. Int J Parasitol 1:61–66

    CAS  Google Scholar 

  • Davey KG (1988) Endocrinology of nematodes. In: Laufer H, Downer RGH (eds) Endocrinology of selected invertebrate types. Alan R. Liss, Inc., New York, pp 63–86

    Google Scholar 

  • Davey KG, Kan SP (1968) Molting in a parasitic nematode, Phocanema decipiens. IV. Ecdysis and its control. Can J Zool 46:893–898

    CAS  Google Scholar 

  • Davies KA, Fischer JM (1994) On hormonal control of moulting in Aphelenchus avenae (Nematoda: Aphelenchida). Int J Parasitol 24:649–655

    CAS  Google Scholar 

  • Dennis RD (1977) On ecdysone-binding proteins and ecdysone-like material in nematodes. Int J Parasitol 7:181–188

    CAS  Google Scholar 

  • Dropkin VH, Lower WR, Acedo J (1971) Growth inhibition of Caenorhabditis elegans and Panagrellus redivivus by selected mammalian and insect hormones. J Nematol 3:349–355

    CAS  Google Scholar 

  • Fenchel T (1978) The ecology of micro and meiobenthos. Annu Rev Ecol Syst 9:99–121

    Google Scholar 

  • Fleming MW (1985a) Ascaris suum: role of ecdysteroids in molting. Exp Parasitol 59:207–210

    Google Scholar 

  • Fleming MW (1985b) Steroidal enhancement of growth in parasitic larvae of Ascaris suum: validation of a bioassay. J Exp Zool 233:229–233

    CAS  Google Scholar 

  • Fleming MW (1987) Ecdysteroids during embryonation of eggs of Ascaris suum. Comp Biochem Physiol A 87:803–805

    CAS  Google Scholar 

  • Fleming MW (1993) Ecdysteroids during development in the ovine parasitic nematode, Haemonchus contortus. Comp Biochem Physiol B 104:653–655

    CAS  Google Scholar 

  • Fleming MW (1997) Nematoda. In: Adams TS (ed) Progress in reproductive endocrinology [vol VIII in Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates]. Wiley, New York, pp 55–60

  • Fodor A, Timar T (1989) Effects of precocene analogs on the nematode Caenorhabditis remanei (var. Bangalorensis) 2. Competitions with a juvenile hormone analogue (methoprene). Gen Comp Endocrinol 74:32–44

    CAS  Google Scholar 

  • Fodor A, Deak P, Kiss I (1982) Competition between juvenile hormone antagonist precocene II and juvenile hormone analogue methoprene in the nematode Caenorhabditis elegans. Gen Comp Endocrinol 46:99–109

    CAS  Google Scholar 

  • Fodor A, Timar T, Kiss I, Hostafi F, Varga E, Soos J, Sebok P (1989) Effects of precocene analogs on the nematode Caenorhabditis remanei (var. Bangalorensis) 1. Structure/activity relations. Gen Comp Endocrinol 74:18–31

    CAS  Google Scholar 

  • Frand AR, Russel S, Ruvkun G (2005) Functional genomic analysis of C. elegans molting. PLoS Biol 3:1719–1733

    CAS  Google Scholar 

  • Garvin C, Holdeman R, Strome S (1998) The phenotype of mes-2, mes-3, mes-4 and mes-6, maternal effect genes required for survival of the germline in Caenorhabditis elegans, is sensitive to chromosome dosage. Genetics 148:167–185

    CAS  Google Scholar 

  • Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1:841–851

    CAS  Google Scholar 

  • Gersch M, Scheffel H (1958) Sekretorisch tätige Zellen im Nervensystem von Ascaris. Naturwissenschaften 45:345–346

    Google Scholar 

  • Gibb KS, Fisher JM (1989) Factors affecting the fourth moult of Contortylenchus grandicolli (Nematoda: Allantonematidae) to the free-living sexual forms. Nematologica 35:125–128

    Article  Google Scholar 

  • Gissendanner CR, Sluder AE (2000) nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev Biol 221:259–272

    CAS  Google Scholar 

  • Gissendanner CR, Crossgrove K, Kraus KA, Maina CV, Sluder AE (2004) Expression and function of conserved nuclear receptor genes in Caenorhabditis elegans. Dev Biol 266:399–416

    CAS  Google Scholar 

  • Goldstein P (1986) Nuclear aberrations and loss of synaptonemal complexes in response to diethylstilbestrol (DES) in Caenorhabditis elegans hermaphrodites. Mutat Res 174:99–107

    CAS  Google Scholar 

  • Hansen EL, Buecher EJ (1971) Effects of insect hormones on nematodes in axenic culture. Experientia 27:859–860

    CAS  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489

    Google Scholar 

  • Hieb WF, Rothstein M (1968) Sterol requirement for reproduction of a freeliving nematode. Science 160:778–780

    CAS  Google Scholar 

  • Hirschmann H (1952) Die Nematoden der Wassergrenze mittelfränkischer Gewässer. Zool Jahrb Syst 81:313–436

    Google Scholar 

  • Hood TE, Calabrese EJ, Zuckerman BM (2000) Detection of an estrogen receptor in two nematode species and inhibition of binding and development by environmental chemicals. Ecotoxicol Environ Saf 47:74–81

    CAS  Google Scholar 

  • Hoshi H, Kamata Y, Uemura T (2003) Effects of 17β-estradiol, bisphenol A and tributyltin chloride on germ cells of Caenorhabditis elegans. J Vet Med Sci 65:881–885

    CAS  Google Scholar 

  • Höss S, Severin GF, Jaser W, Schramm K-W (2001) Effects of 17α-ethinylestradiol and trenbolone on the growth and reproduction of Caenorhabditis elegans. Organohalogen Compounds 53:106–108

    Google Scholar 

  • Höss S, Jüttner I, Traunspurger W, Pfister G, Schramm K-W, Steinberg C (2002) 4-Nonylphenol can enhance the reproduction of Caenorhabditis elegans (Nematoda). Environ Pollut 120:169–172

    Google Scholar 

  • Höss S, Traunspurger W, Severin GF, Jüttner I, Pfister G, Schramm K-W (2004) Influence of 4-nonylphenol on the structure of nematode communities in freshwater microcosms. Environ Toxicol Chem 23:1268–1275

    Google Scholar 

  • Höss S, Traunspurger W, Zullini A (2006) Freshwater nematodes in environmental science. In: Abebe E, Traunspurger W, Andrassy I (eds) Freshwater nematodes—ecology and taxonomy. CABI Publishing, Cambridge, pp 144–162

    Google Scholar 

  • Jeong PY, Jung M, Yim YH, Kim H, Park M, Hong E, Lee W, Kim YH, Kim K, Paik Y-K (2005) Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433:541–545

    CAS  Google Scholar 

  • Johnson RN, Viglierchio DR (1970) Heterodera schachtii responses to exogenous hormones. Exp Parasitol 27:301–309

    CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    CAS  Google Scholar 

  • Kiser CS, Parish EJ, Bone LW (1986) Binding of steroidal sex hormones by supernatant from Trichostrongylus colubriformis (Nematoda). Comp Biochem Physiol B 83:787–790

    Google Scholar 

  • Kohra S, Tominaga N, Mitsui Y, Takao Y, Ishibashi Y, Arizono K (1999) Determination of a screening system of endocrine disruptors by the induction of vitellogenin mRNA in C. elegans larvae. J Health Sci 45:37

    Google Scholar 

  • Kostrouch Z, Kostrouchova M, Rall JE (2005) Steroid/thyroid hormone receptor genes in Caenorhabditis elegans. Proc Natl Acad Sci USA 92:156–159

    Google Scholar 

  • Kostrouchova M, Krause M, Kostrouch Z, Rall JE (2001) Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 98:7360–7365

    CAS  Google Scholar 

  • Kurzchalia TV, Ward S (2003) Why do worms need cholesterol? Nat Cell Biol 5:684–688

    CAS  Google Scholar 

  • Lee DE (2002) The biology of nematodes. Tailor and Francis, London, UK

    Google Scholar 

  • Lee E-Y, Shim Y-H, Chitwood DJ, Hwang SB, Lee J, Paik Y-K (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem Biophys Res Commun 328:929–936

    CAS  Google Scholar 

  • Lee HM, Parish EJ, Bone LW (1989) The occurrence of estrone and estriol in Trichostrongylus colubriformis. Lipids 24:903–904

    CAS  Google Scholar 

  • Lee HM, Parish EJ, Bone LW (1990) Occurrence of mammalian sex steroids in the free-living nematode, Turbatrix aceti. Comp Biochem Physiol A 97:115–117

    Google Scholar 

  • Leppänen MT, Kukkonen J (1998) Relative importance of ingested sediment and pore water as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus, Müller). Environ Sci Technol 32:1503–1508

    Google Scholar 

  • Lozano R, Chitwood DJ, Lusby WR, Thompson MT, Svoboda MA, Patterson GW (1984) Comparative effects of growth inhibitors on sterol metabolism in the nematode Caenorhabditis elegans. Comp Biochem Physiol C 79:21–26

    CAS  Google Scholar 

  • Maglich JM, Sluder A, Guan X, McKee DD, Carrick K, Kamdar K, Willson TM, Moore JT (2001) Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2:0029.1–0029.7

    Google Scholar 

  • Majundar TK, Parish EJ, Bone LW (1987) Steroid analogs inhibit hormone binding by an extract from Nippostrongylus brasiliensis (Nematoda). Comp Biochem Physiol B 88:81–84

    CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    CAS  Google Scholar 

  • Matyash V, Geier C, Henske A, Mukherjee S, Hirsh D, Thiele C, Grant B, Maxfield FE, Kurzchalia TV (2001) Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell 12:1725–1736

    CAS  Google Scholar 

  • Matyash V, Entchev EV, Mende F, Wisch-Bräuninger M, Thiehle C, Schmidt AW, Knölker HJ, Ward S, Kurzchalia TV (2004) Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16. PLoS Biol 2:1561–1571

    CAS  Google Scholar 

  • Meerovitch E (1965) Studies on the in vitro axenic development of Trichinella spriralis—II. Preliminary experiments on the effects on the effects of farnesol, cholesterol, and an insect extract. Can J Zool 43:81–85

    CAS  Google Scholar 

  • Michiels I, Traunspurger W (2005) Impact of resource availability on species composition and diversity in freshwater nematodes. Oecologia 142:98–103

    Google Scholar 

  • Motola DL, Cummins CL, Rottiers V, Sharma KK, Li TT, Li Y, Suiono-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ (2006) Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124:1209–1223

    CAS  Google Scholar 

  • Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33:161–168

    CAS  Google Scholar 

  • Novillo A, Won SJ, Li C, Callard IP (2005) Changes in nuclear receptor and vitellogenin gene expression in response to steroids and heavy metal in Caenorhabditis elegans. Integr Comp Biol 45:61–71

    CAS  Google Scholar 

  • Poinar GO (1975) Entomogenous nematodes. A manual and host list of insect–nematode associations. E.J. Brill, Leiden, The Netherlands

    Google Scholar 

  • Reichert K, Menzel R (2005) Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genomic microarray. Chemosphere 61:229–237

    CAS  Google Scholar 

  • Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL (1996) Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274:1389–1391

    CAS  Google Scholar 

  • Riddle DL, Albert PS (1997) Genetic and environmental regulation of dauer larvae development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 739–768

    Google Scholar 

  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) (1997) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Rogers WP (1978) The inhibitory action of insect juvenile hormone on the hatching of nematode eggs. Comp Biochem Physiol A 61:187–190

    Google Scholar 

  • Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A (2006) Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev Cell 10:473–482

    Article  CAS  Google Scholar 

  • Schackwitz WS, Inoue T, Thomas JH (1996) Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron 17:719–728

    CAS  Google Scholar 

  • Schratzberger M, Wall CM, Reynolds WJ, Reed J, Waldock MJ (2002) Effects of paint-derived tributyltin on structure of estuarine nematode assemblages in experimental microcosms. J Exp Mar Biol Ecol 272:217–235

    Google Scholar 

  • Shanta CS, Meerovitch E (1970) Specific inhibition of morphogenesis in Trichinella spiralis by insect juvenile hormone mimics. Can J Zool 48:617–620

    CAS  Google Scholar 

  • Spindler K-D, Spindler-Barth M (2000) Nematoda. In: Dorn A (ed) Progress in developmental endocrinology [vol VIII in Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates]. Wiley, New York, pp 105–116

  • Spindler K-D, Spindler-Barth M, Mehldorn H (1986) Effects of the juvenile hormone antagonist precocene II and the moulting hormone 20-OH-ecdysone on Litomosoides carinii and Dipetalonema viteae in vitro. Z Parasitenkd 72:837–841

    CAS  Google Scholar 

  • Svoboda JA, Thompson MJ, Robbins WE (1972) Azasteroids: potent inhibitors of insect molting and metamorphosis. Lipids 7:553–556

    CAS  Google Scholar 

  • Swanson JA, Falvo R, Bone LW (1984) Nippostrongylus brasiliensis: effects of testosterone on reproduction and establishment. J Parasitol 14:241–247

    CAS  Google Scholar 

  • Thong CHS, Webster JM (1971) The effect of gonadotrophins on the in vitro growth of the free-living nematode Cephalobus sp. Bastian. Can J Zool 49:1059–1061

    Article  CAS  Google Scholar 

  • Tominaga N, Tomoeda M, Kohra S, Takao Y, Nagae M, Ueda K, Ishibashi H, Kai T, Arizono K (2002) A convenient sublethal assay of alkylphenol and organotin compounds using the nematode Caenorhabditis elegans. J Health Sci 48:555–559

    CAS  Google Scholar 

  • Tominaga N, Kohra S, Iguchi T, Arizono K (2003a) A multi-generation sublethal assay of phenols using the nematode Caenorhabditis elegans. J Health Sci 49:459–463

    CAS  Google Scholar 

  • Tominaga N, Ura K, Kawakami M, Kawaquchi T, Kohra S, Mitsui Y, Iguchi T, Arizono K (2003b) Caenorhabditis elegans responses to specific steroid hormones. J Health Sci 49:28–33

    CAS  Google Scholar 

  • Traunspurger W (1997) Bathymetric, seasonal and vertical distribution of feeding types of nematodes in an oligotrophic lake. Vie et Milieu 47:1–7

    Google Scholar 

  • Traunspurger W (2002) Nematoda. In: Rundle SD, Robertson A, Schmid-Araya J (eds) Freshwater meiofauna: biology and ecology. Blackhuys Publishers, Leiden, The Netherlands, pp 63–104

    Google Scholar 

  • Traunspurger W, Bergtold M, Goedkoop W (1997) The effect of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112:118–122

    Google Scholar 

  • Ura K, Kai T, Sakata S, Iguchi T, Arizono K (2002) Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. J Health Sci 48:583–586

    CAS  Google Scholar 

  • van den Brink PJ, ter Braak CJF (1999) Principal response curves: analysis of time dependent multivariate responses of biological community to stress. Environ Toxicol Chem 18:138–148

    Google Scholar 

  • Warbrick EV, Barker GC, Rees HH, Howells RE (1993) The effect of invertebrate hormones and potential hormone inhibitors on the third larval moult of the filarial nematode, Dirofilaria immitis, in vitro. Parasitology 107:459–463

    Article  CAS  Google Scholar 

  • Watanabe M, Mitani N, Ishii N, Miki K (2005) A mutation in a cuticle collagen causes hypersensitivity to the endocrine disrupting chemical, bisphenol A, in Caenorhabditis elegans. Mutat Res 570:71–80

    CAS  Google Scholar 

  • Weltje L, Höss S, van Doormalen J, Markert B, Oehlmann J (2003) Endocrine disruption in the nematode Caenorhabditis elegans. In: Abstracts of the 13th annual meeting of SETAC Europe, Hamburg, Germany, p 183

  • Yeates GW (1981) Nematode populations in relation to soil environmental factors: a review. Pedobiologia 22:312–338

    Google Scholar 

  • Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    CAS  Google Scholar 

  • Yochem J, Tuck S, Greenwald I, Han M (1999) A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 126:597–606

    CAS  Google Scholar 

  • Yu ZQ, Xiao BH, Huang WL, Peng P (2004) Sorption of steroid estrogens to soils and sediments. Environ Toxicol Chem 23:531–539

    CAS  Google Scholar 

  • Zullini A (1988) The ecology of the Lambro river. Riv Idrobiol 27:39–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Höss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höss, S., Weltje, L. Endocrine disruption in nematodes: effects and mechanisms. Ecotoxicology 16, 15–28 (2007). https://doi.org/10.1007/s10646-006-0108-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-006-0108-y

Keywords

Navigation