Skip to main content
Log in

Photosynthetic parameters as indicators of trinitrotoluene (TNT) inhibitory effect: Change in chlorophyll a fluorescence induction upon exposure of Lactuca sativa to TNT

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Trinitrotoluene, as a compound of conventional explosive, may cause inhibitory effect on terrestrial plants. When Lactuca sativa was exposed to different concentrations of trinitrotoluene (32–1000 mg/kg), photosynthetic process was investigated by using rapid chlorophyll fluorescence kinetic and pulse modulated fluorometry. The decrease of chlorophyll a variable fluorescence was seen to be caused by the deactivation of photosystem II reaction centers. We found for rapid variable fluorescence to be a useful indicator to evaluate the inhibitory effect of trinitrotoluene on photosystem II primary photochemistry and electron transport. The fluorescence parameters, related to the reduction state of photosystem II and to non-photochemical dissipation of light energy, showed a strong relation between the inhibitory effect of photosystem II activity and concentration of trinitrotoluene. The change of photosynthetic fluorescence parameters induced by trinitrotoluene was a reliable indication of the plant physiological state. We proposed for the reduction state of photosystem II and the non-photochemical energy dissipation to be a useful tool in bioassay toxicity testing of trinitrotoluene polluted soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altamirano M, Garcia-Villada L, Agrelo M, Sánchez-Martin L, Martin-Otero L, Flores-Moya A, Rico M, López-Rodas V, Costas E (2004) A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: an application to detect TNT. Biosens Bioelectron 19:1319–1323

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials (1999) Standard guide for conducting terrestrial plant toxicity tests. E1963-98

  • Boopathy R (2000) Bioremediation of explosives contaminated soil. Int Biodeter Biodegrad 46:29–36

    Article  CAS  Google Scholar 

  • Christensen MG, Teicher HB, Streibig JC (2003) Linking fluorescence induction curve and biomass in herbicide screening. Pest Manag Sci 59:1303–1310

    Article  CAS  Google Scholar 

  • Critchley C (1998) Photoinhibition. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. New York: Cambridge University Press, pp 246–272

    Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406

    Article  CAS  Google Scholar 

  • Dewez D, Marchand M, Eullaffroy P, Popovic R (2002) Evaluation of the effects of diuron and its derivatives on Lemna gibba using a fluorescence toxicity index. Environ Toxicol 17:493–501

    Article  CAS  Google Scholar 

  • Gong P, Wilke BM, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157

    Article  CAS  Google Scholar 

  • Horton P, Hague A (1988) Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. Biochim Biophys Acta 932:107–115

    Article  CAS  Google Scholar 

  • Juneau P, El Berdey A, Popovic R (2002) PAM-fluorometry in the determination of the sensitivity of Chlorella vulgaris, Selenastrum capricornutum and Chlamydomonas reinhardtii to copper. Arch Environ Contam Toxicol 42:155–164

    Article  CAS  Google Scholar 

  • Krishnan G, Horst GL, Darnell S, Powers WL (2000) Growth and development of smooth bromgrass and tall fescue in TNT-contaminated soil. Environ Pollut 107:109–116

    Article  CAS  Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1–28

    Article  Google Scholar 

  • Lee I, Kim OK, Chang YY, Bae B, Kim HH, Baek KH (2002) Heavy metal concentrations and enzyme activities in soil from a contaminated Korean Shooting Range. J Biosci Bioeng 94:406–411

    CAS  Google Scholar 

  • Mallick N, Mohn FH (2003) Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecotox Environ Saf 55:64–69

    Article  CAS  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558–1566

    Article  Google Scholar 

  • Popovic R, Dewez D, Juneau P (2003) Applications of chlorophyll fluorescence in ecotoxicology: heavy metals, herbicides, and air pollutants. In: DeEll JR, Toivonen PMA (eds) Practical applications of chlorophyll fluorescence in plant biology. Kluwer Academic Publishers, London, pp 151–184

    Google Scholar 

  • Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003) Phytotoxicity of 2,4,6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Contam Toxicol 44:198–209

    Article  CAS  Google Scholar 

  • Rohacek K, Bartak M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363

    Article  CAS  Google Scholar 

  • Rohacek K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29

    Article  CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and no-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Siciliano SD, Roy R, Greer CW (2000) Reduction in denitrification activity in field soils exposed to long term contamination by 2,4,6-trinitrotoluene (TNT). FEMS Microbiol Ecol 32:61–68

    Article  CAS  Google Scholar 

  • Strasser BJ, Dau H, Heinze H, Senger H (1999) Comparison of light induced and cell cycle dependent changes in the photosynthetic aparatus: a fluorescence induction study on the green alga Scenedesmus obliquus. Photosyn Research 60:217–227

    Article  CAS  Google Scholar 

  • Talmage SS, Opresko DM, Maxwell CJ, Welsh CJE, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munition compounds: environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Popovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, N.A., Dewez, D., Robidoux, P. et al. Photosynthetic parameters as indicators of trinitrotoluene (TNT) inhibitory effect: Change in chlorophyll a fluorescence induction upon exposure of Lactuca sativa to TNT. Ecotoxicology 15, 437–441 (2006). https://doi.org/10.1007/s10646-006-0065-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-006-0065-5

Keywords

Navigation