, Volume 15, Issue 2, pp 157–169 | Cite as

Monitoring the Effects of Water Pollution on Cyprinus carpio in Karakaya Dam Lake, Turkey

  • Murat OzmenEmail author
  • Abbas Güngördü
  • F. Zehra Kucukbay
  • R. Elif Güler


Karakaya Dam Lake (KDL) is one of the most important water sources, both for irrigation and fishery, located in eastern part of Turkey. This study is concerned with the pollution of the lake contributed by urban, industrial and agricultural activities. The parameters selected for this aim were the enzymes commonly used as biomarkers of environmental pollution. The activity of glutathione S-transferase (GST), carboxylesterase (CE), lactate dehydrogenase (LDH), acid phosphatase (ACP) and aspartate amino transferase (AST) has been determined in liver tissue samples of Cyprinus carpio, a representative species of KDL. Furthermore, brain acetylcholinesterase (AChE) activity which is mainly affected by pesticides such as organophosphates, has been assayed. Chemical analysis results showed that KDL was polluted by various heavy metals as it was apparent from water, sediment and gill tissue. The activity of brain AChE was significantly lower in all localities than Tecimli area (St−5) where there is no agricultural and industrial activities in the immediate periphery. Thus, this change of AChE activity may relate to agricultural pollution in KDL. On the other hand, no significant differences were found for selected enzyme biomarkers, but condition factor (CF) or hepatosomatic index were significantly different from the St−5 samples, a result that may be attributed to water pollution in KDL by various contaminants.


biomonitoring water pollution Cyprinus carpio fish enzyme activity 



This study is a part of a comprehensive project that is supported by İnönü University Research Fund (Project no: İ.Ü.A.F. 2001-09) and Environmental Protection Foundation of Malatya Governership. Authors wish to thank supporting institutions for their financial support of the project. Authors also thank Dr. H. Geckil (at Inonu University) for his critical reading of the manuscript.


  1. Agradi E., Baga R., Cillo F., Ceradini S., Heltai D., (2000). Environmental contaminants and biochemical response in eel exposed to Po River waterChemosphere 41: 1555–62CrossRefGoogle Scholar
  2. Almeida J.A., Novelli E.L.B., Silva M.D.P., Alves Júnior R., (2001). Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus Environ. Pollut. 114: 169–75CrossRefGoogle Scholar
  3. Anonymous. (2000). DSI Genel Müdürlüğü Işletme Bakım DairesiGoogle Scholar
  4. Anonymous. (2001). Environmental Legislation in European Community and Turkey. Ankara: Türkiye Çevre Vakfı Yayını, 456 ppGoogle Scholar
  5. Asztalos B., Nemcsók J., Benedeczky I., Gabriel R., Szabó A., Refaie O.J., (1990). The effects of pesticides on some biochemical parameters of common carp (Cyprinus carpio)Arch. Environ. Contam. Toxicol. 19: 275–82CrossRefGoogle Scholar
  6. Barnhoorn I.E.J., van Vuren J.H.J., (2004). The use of different enzymes in feral freshwater fish as a tool for the assessment of water pollution in South Africa Ecotoxicol. Environ. Safety 59: 180–5CrossRefGoogle Scholar
  7. Baron M.G., Charron K.A., Stott W.T., Duvall S.E., (1999). Tissue carboxylesterase activity of rainbow troutEnviron. Toxicol. Chem. 18: 2506–11CrossRefGoogle Scholar
  8. Basaglia F., (2000). Isozyme distribution of ten enzymes and their loci in South American lungfish, Lepidosiren paradoxa (Osteichtyes, Dipnoi)Comp. Biochem. Physiol. Part B 126: 503–10CrossRefGoogle Scholar
  9. Battaglia, M. and York, P. (2002). Water quality changes through the Ardel Pond. In UTS Freshwater Ecology Report 2002. Sydney: Department of Environmental Sciences, University of TechnologyGoogle Scholar
  10. Brewer S.K., Little E.E., DeLonay A.J., Beauvais S.L., Jones S.B., Ellersieck M.R., (2001). Behavioral dysfunctions correlate to altered physiology in rainbow trout (Oncorynchus mykiss) exposed to cholinesterase-inhibiting chemicalsArch. Environ. Contam. Toxicol. 40: 70–6CrossRefGoogle Scholar
  11. Cajaraville M.P., Bebianno M.J., Blasco J., Porte C., Sarasquete C., Viarengo A., (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: A practical approachSci. Total. Environ. 247: 295–311CrossRefGoogle Scholar
  12. Canli M., Atli G., (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish speciesEnviron. Pollut. 121: 129–36CrossRefGoogle Scholar
  13. Chambers H.W., (1992). Organophosphorus compounds: An overwiew In Chambers J.E., Levi P.E., (eds) Organophosphates: Chemistry, Fate and Effects Academic Press San Diego pp. 3–17Google Scholar
  14. Das B.K., Mukherjee S.C., (2000). Chronic toxic effects of quinalphos on some biochemical parameters in Labeo rohita (Ham)Toxicol. Lett. 114: 11–8CrossRefGoogle Scholar
  15. de la Torre F.R., Salibián A., Ferrari L., (2000). Biomarkers assessment in juvenile Cyprinus carpio exposed to waterborne cadmiumEnviron. Pollut. 109: 277–82CrossRefGoogle Scholar
  16. den Besten P.J., Valk S., van Weerlee E., Nolting R.F., Postma J.F., Everaarts J.M., (2001). Bioaccumulation and biomarkers in the sea star Asterias rubens (Echinodermata: Asteroidae): a North Sea field studyMar. Environ. Res. 51: 365–87CrossRefGoogle Scholar
  17. Dethloff G.M., Bailey H.C., Maier K.J., (2001). Effects of dissolved copper on select hematological, biochemical and immunological parameters of wild rainbow trout (Oncorhynchus mykiss)Arch. Environ. Contam. Toxicol. 40: 371–80CrossRefGoogle Scholar
  18. EC (European Commission). (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. L 330/32, 5.12.98Google Scholar
  19. Edsall C.C., (1999). A blood chemistry profile for lake troutJ. Aquat. Anim. Health 11: 81–6CrossRefGoogle Scholar
  20. Egaas E., Skaare J.U., Svendsen N.O., Sandvik M., Falls J.G., Dauterman W.C., Collier T.K., Netland J., (1993). A comparative study of effects of atrazine on xenobiotic metabolizing enzymes in fish and insect, and of the in vitro phase II atrazine metabolism in some fish, insects, mammals and one plant speciesComp. Biochem. Physiol. Part C 106: 141–9CrossRefGoogle Scholar
  21. Ellman G.L., Courtney K.D., Andreas V., Featherstone R.M., (1961). A new and rapid cholimetric determination of cholinesterase activityBiochem. Pharmacol. 7: 88–95CrossRefGoogle Scholar
  22. Farkas A., Salánki J., Specziár A., (2002). Relation between growth and the heavy metal concentration in organs of Bream Abramis brama L. populating Lake BalatonArch. Environ. Contam. Toxicol. 43: 236–43CrossRefGoogle Scholar
  23. Flammarion P., Noury P., Garric J., (2002). The measurement of cholinesterase activities as a biomarker in chub (Leuciscus cephalus): The fish length should not be ignored Environ. Pollut. 120: 325–30CrossRefGoogle Scholar
  24. Gauthier L., Tardy E., Mouchet F., Marty J., (2004). Biomonitoring of the genotoxic potential (micronucleus assay) and detoxifying activity (EROD induction) in the River Dadou (France), using the amphibian Xenopus laevisSci. Total Environ. 323: 47–61CrossRefGoogle Scholar
  25. Gruber S.J., Munn M.D., (1998). Organophosphate and carbamate insecticides in agricultural waters and cholinesterase (ChE) inhibition in common carp (Cyprinus carpio) Arch. Environ. Contam. Toxicol. 35: 391–6CrossRefGoogle Scholar
  26. Habig W.H., Pabst M.J., Jacoby W.B., (1974). Glutathione S-transferases: The first enzymatic step in mercapturic acid formationJ. Biol. Chem. 249: 7130–9Google Scholar
  27. Henriksen E.O., Gabrielsen G.W., Trudeau S., Wolkers J., Sagerup K., Skaare J.U., (2000). Organochlorines and possible biochemical effects in glaucous gulls (Larus hyperboreus) from Bjørnøya, the Barents seaArch. Environ. Contam. Toxicol. 38: 234–43CrossRefGoogle Scholar
  28. Henry F., Amara R., Courcot L., Lacouture D., Bertho M.L., (2004). Heavy metals in four fish species from the French coast of the Eastern English Channel and Southern Bight of the North SeaEnviron. Int. 30: 675–83CrossRefGoogle Scholar
  29. Lopes P.A., Pinheiro T., Santos M.C., Mathias M.L., Collares-Pereira M.J., Viegas-Crespo A.M., (2001). Response of antioxidant enzyme in freshwater fish populations (Leuciscus alburnoides complex) to inorganic pollutants exposureSci. Total Environ. 280: 153–63CrossRefGoogle Scholar
  30. Lowry O.H., Rosembrough N.J., Farr A.L., (1951). Protein measurement with pholin phenol reagentJ. Biol. Chem. 193: 265–75Google Scholar
  31. Martín-Díazi M.L., Tuberty S.R., McKenney Jr C.L., Salesi D., Del Vallsi T.A., (2005). Effects of cadmium and zinc on Procambarus clarkii: Simulation of the Aznalcóllar mining spillCiencias Mar. 31(1B): 197–202Google Scholar
  32. Mayer F.L., Versteeg D.J., McKee M.J., Folmar L.C., Graney R.L., McCume D.C., Rattner B.A., (1992). Physiological and nonspecific biomarkers In Hugget J.R., Kimerle R.A., Mehrle Jr P.M., Bergman H.L., (eds) Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress Lewis Publishers Boca Raton pp. 5–85Google Scholar
  33. Mazorra M.T., Rubio J.A., Blasco J., (2002). Acid and alkaline phosphatase activities in the clam Scrobicularia plana: Kinetic characteristics and effects of heavy metalsComp. Biochem. Physiol. B131: 241–9CrossRefGoogle Scholar
  34. Neff J.M., (1985). Use of biochemical measurements to detect pollutant-mediated damage to fish In Cardwell R.D., Purdy R., Bahner R.C., (eds) Aquatic Toxicology and Hazard Assessment: Seventh Symposium, ASTM STP 854 ASTM Philadelphia pp. 155–183Google Scholar
  35. Norris D.O., Camp J.M., Maldonado T.A., Woodling J.D., (2000). Some aspects of hepatic function in feral brown trout, Salmo trutta, living in metal contaminated water Comp. Biochem. Physiol. C 127: 71–8CrossRefGoogle Scholar
  36. Nriagu J.O., Lawson G., Wong H.K.T., Azcue J.M., (1993). A protocol for minimizing contamination in the analysis of trace metals in Great Lakes watersJ. Great Lakes Res. 19: 175–82CrossRefGoogle Scholar
  37. Ozmen M., Sener S., Mete A., Kucukbay H., (1999). In vitro and in vivo acetylcholinesterase-inhibiting effect of new classes of organophophorus compounds Environ. Toxicol. Chem. 18: 241–6CrossRefGoogle Scholar
  38. Petřivalsk<?DoNotRelease TextContentMissing?> M., Machala M., Nezveda K., Piačka V., Svabodová Z., Drábek P., (1997). Glutathione dependent detoxifying enzymes in rainbow trout liver: Search for specific biochemical markers of chemical stressEnviron. Toxicol. Chem. 16: 1417–21CrossRefGoogle Scholar
  39. Råberg C.M.I., Lipsky M.M., (1997). Toxicity of chloroform and carbon tetrachloride in primary cultures of rainbow trout hepatocytesAquat. Toxicol. 37: 169–82CrossRefGoogle Scholar
  40. Ricard A.C., Daniel C., Anderson P., Hontela A., (1998). Effects of subchronic exposure to cadmium chloride on endocrine and metabolic functions in rainbow trout Oncorhynchus mykiss Arch. Environ. Contam. Toxicol. 34: 377–81CrossRefGoogle Scholar
  41. Samecka-Cymerman A., Kempers A.J., (2003). Biomonitoring of water pollution with Elodea canadensis. A case study of three small Polish rivers with different levels of pollutionWater Air Soil Pollut. 145: 139–53CrossRefGoogle Scholar
  42. Sancho E., Cerón J.J., Ferrando M.D., (2000). Cholinesterase activity and hematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla Ecotox. Environ. Safety 46: 81–6CrossRefGoogle Scholar
  43. Schmitt C.J., (2004). Concentrations of arsenic, cadmium, copper, lead, selenium, and zinc in fish from the Mississippi River basin, 1995Environ. Monit. Assess. 90: 289–321CrossRefGoogle Scholar
  44. Sharma R.M., (1990). Effects of endosulfan on acid and alkaline phosphatase activity in liver, kidney and muscles of Channa gachua Bull. Environ. Contam. Toxicol. 44: 443–8CrossRefGoogle Scholar
  45. Strmac M., Braunbeck T., (2000). Isolated hepatocytes of rainbow trout (Oncorhynchus mykiss) as a tool to discriminate between differently contaminated small river systemToxicol. In Vitro 14: 361–77CrossRefGoogle Scholar
  46. Tuvikene A., Huuskonen S., Roy S., Lindström-Seppä P., (1996). Biomonitoring of South Estonian waters by means of xenobiotic metabolism of rainbow trout (Oncorhynchus mykiss) liverComp. Biochem. Physiol. C 114: 171–7CrossRefGoogle Scholar
  47. USEPA. (1982). U.S. Environmental Protection Agency, Methods for Chemical Analysis of Water and Wastes, EPA−600/4–82–055, December 1982Google Scholar
  48. Weiss C.M., (1961). Physiological effects of organic phosphorus insecticides on several species of fishTrans. Am. Fish Soc. 90: 143–52CrossRefGoogle Scholar
  49. WHO. (1993). Chemical Aspects in Guidelines for Drinking-Water Quality, (2nd edn.) Vol. 1. Recommendations, 1. Drinking Water – Standards, 65 pp. Geneva: World Health Organization Google Scholar
  50. Whyte J.J., Jung R.E., Schmitt C.J., Tillitt D.E., (2000). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposureCrit. Rev. Toxicol. 30: 347–570CrossRefGoogle Scholar
  51. Yesilada, E., Ozmen, M., Yesilada, O. and Mete, A. (2005). Comparative toxicity of biotreated and untreated azinphosmethyl on Drosophila melanogaster and Bufo viridis. Fresen. Environ. Bull. (In Press)Google Scholar
  52. Zinkl J.G., Lockhard W.L., Kenny S.A., Ward F.J., (1991). The effects of cholinesterase inhibiting insecticides on fish In Mineau P., (ed) Cholinesterase-inhibiting Insecticides Elsevier Science Publishers New York pp. 233–254Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Murat Ozmen
    • 1
    Email author
  • Abbas Güngördü
    • 1
  • F. Zehra Kucukbay
    • 2
  • R. Elif Güler
    • 1
  1. 1.Faculty of Arts and Science, Department of Biology, Environmental Toxicology LaboratoryInonu UniversityMalatyaTurkey
  2. 2.Faculty of Pharmacy, Department of Analytical ChemistryInonu UniversityMalatyaTurkey

Personalised recommendations