Skip to main content

Advertisement

Log in

Impact of Distillery Effluent on Carbohydrate Metabolism of Freshwater Fish, Cyprinus carpio

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The impact of distillery effluent on carbohydrate metabolism of Cyprinus carpio was studied at different days during exposure (7, 14, and 21 days) in the ambient temperature of 28±1 °C. Oxygen consumption in fish decreased with increasing effluent concentrations as well as duration of exposure. Effluent concentrations and exposure durations (days) had a significant effect on oxygen consumption of tested fish (p<0.0005). Total carbohydrate, glycogen content and SDH enzyme activity in muscle, liver and brain tissues of C. carpio exposed to different sublethal concentrations decreased gradually and significantly. This was also the case with exposure duration. Reduction in glycogen content was greater in liver tissue i.e., 54.1% in 0.2% effluent concentration on the 21st day of exposure. However, serum glucose and lactic acid content showed an increasing trend with increase in effluent concentration and time of exposure. Unlike SDH, LDH enzyme activity of muscle, liver and brain tissues showed an increasing trend and the enhancement of enzyme activity was more in liver tissue (71.3%). From these results, it could be inferred that respiratory processes in C. carpio under distillery effluent stress was affected resulting in a shift towards anaerobiosis at organ level during sublethal intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • APHA-AWWA-WPCF 1975. Standard methods for the examination of water and wastewaterAmerican Public Health Association, American Water Works Association and Water Pollution Control Federation. 14th ed Washington, D.C

    Google Scholar 

  • Ayyadurai T., Krishnasamy V., 1989. Total mercury concentration in freshwater, sediment and fish J. Environ. Biol. 10(2 Supp.):165–71

    CAS  Google Scholar 

  • Bailey N.T.J., 1959 Statistical Methods in Biology The English University Press London

    Google Scholar 

  • Carroll N.V., Longly R.W., Roe J.H., 1956. The glycogen determination in liver and muscle by use of anthrone reagent J. Biol. Chem. 220:583–93

    PubMed  CAS  Google Scholar 

  • Chavin W., Young J.E., 1970. Factors in the determination of normal serum, glucose levels of goldfish, Carassius auratus L. Comp Biochem. Physiol. 33:629–53

    Article  CAS  Google Scholar 

  • Clarke D.H., 1975. Exercise Physiology Prentice Hall Co New Jersey

    Google Scholar 

  • David A., Ray P., 1966. Studies on the pollution in river Daha (N.Bihar) by sugar and distillery wastes Indian J. Environ. Health 8:6–35

    Google Scholar 

  • David A., 1956 Studies on pollution of the Bhadravathi (Mysore State) with industrial effluents Proc. Nat. Inst. Sci. India 228:122–60

    Google Scholar 

  • Davis J.C., 1973. Sublethal effects of bleached kraft mill effluent on respiration and circulation in sockeye salmon, (Onchorhynchus nerka) J. Fish. Res. Bd. Can. 30:369–77

    CAS  Google Scholar 

  • Davis J.C., 1976. The need to establish heavy metal standards on the basis of dissolved metals In: Andrew R.W., Hodsov P.V., Kanasevich D.E., (Eds.), Toxicity to Biota of Metal forms in Natural Water Proc. Workshop pp. 93–126

    Google Scholar 

  • Dayananda Reddy R., Purushotham K.R., Ramamurthi R., 1984. Effect of sublethal concentration of sumithion (fenitrothion) on carbohydrate metabolism in the South Indian earthworm, Lampeto mauritii (Kinberg) J. Environ. Biol. 5(2):119–23

    Google Scholar 

  • DeZwaan A., Zandee D.I., 1972. The utilization of glycogen and accumulation of some intermediates during anaerobiosis in Mytilus edulis Comp. Biochem. Physiol. 7:327–38

    Google Scholar 

  • Dhavale D.M., Giridhar B.A., Masurekar V.B., 1988. Respiration potentials of the crab, Scylla serrata (Forskal) under cadmium intoxication In Abbou R., (ed.) Hazardous Waste: Detection, Control and Treatment Elsevier Science Publ., B.V. Amsterdam pp. 1181–6

    Google Scholar 

  • Driedzic W.R., Hochachka P.W., 1979. Metabolism In: Hoar W.S., Randall D.J., (Eds.) Fish Physiology, Vol. 7 Academic PressNew York, USA

    Google Scholar 

  • Ellis M.M., 1937. Detection and measurement of stream pollution. Bull. No. 22, Bull Bur. Fish 48:365–437

    Google Scholar 

  • Fagerland U.H.M., 1967. Plasma cartisol concentration in relation to stress in adult sockeye salmon during the freshwater stage of their life cycle Gen. Comp. Endocrinol 8:197–207

    Article  PubMed  Google Scholar 

  • Haniffa M.A., Porchelvi M., 1985. Effect of distillery effluent on oxygen consumption of freshwater fish, Sarotherodon mossambicus J. Environ. Biol. 6(1):17–23

    Google Scholar 

  • Haniffa M.A., Sundaravadanam S., 1984. Effects of distillery effluent on histopathological changes in certain tissues of Barbus stigma Life Sci. Ad. 2:142–6

    Google Scholar 

  • Havu, N. (1969). Sulphyhydryl inhibitors and pancreatic islet tissue. Acta Endocrinol. 139 (Suppl 1)

  • Heath A.G., Pritchard A.W., 1965. Effects of severe hypoxia on carbohydrate energy stores and metabolism in two species of freshwater fish Physiol. Zool. 38:325

    CAS  Google Scholar 

  • Heath A.G., 1987. Physiological energetics In: Heath A.G., (Ed.), Water Pollution and Fish Physiology CRC PressBoca Raton, FL, USA pp 131–63

    Google Scholar 

  • Hingorani H.G., Diwan A.D., Chandra Sekhoran Naidu N., 1979. Oxygen consumption in the fish, Labeo rohita under exposition to different concentrations of industrial effluents Comp. Physiol. Ecol. 4:272–6

    CAS  Google Scholar 

  • Huckabee W.E., 1958. Relationships of pyruvate and lactate during anaerobic metabolism. II. Exercise and formation of O2 depletion J. Clin. Invest. 37:225–61

    Google Scholar 

  • Joshi, H.C. (1999). Bio-energy potential of distillery effluents. Bioenergy News 3(3)

  • Klein, L. (1972). River Pollution. II. Causes and Effects, 5th ed. Butterworth and Co. Ltd

  • Larson A.L., 1973. Metabolic effects of epinephrin and norepinephirin in the eel, Anguilla anguilla L. Gen Comp. Endocrinol 20:155–67

    Article  PubMed  Google Scholar 

  • McLeay D.J., Brown D.A., 1974. Growth stimulation and chemical changes in juvenile coho salmon (Onchorhynchus kisutch) exposed to bleached kraft pulp mill effluent for 200 days J. Fish. Res. Bd. Can. 31:1043–9

    CAS  Google Scholar 

  • McLeay D.J., Brown D.A., 1975. Effects of acute exposure to bleached kraft pulp mill effluent on carbohydrate metabolism of juvenile Coho salmon (Onchorhynchus kisutch) during rest and exercise J. Fish. Res. Bd. Can. 32:753–60

    CAS  Google Scholar 

  • McLeay D.J., Brown D.A., 1979. Stress and chronic effects of untreated and treated bleached kraft pulp mill effluent on the biochemistry and stamina of juvenile coho salmon (Onchorhynchus kisutch) J. Fish. Res. Bd. Can. 36:49

    Google Scholar 

  • McLeay D.J., 1973. Effects of a 12 hour and 25 day exposure to kraft paper mill effluent on the blood and tissues of juvenile Coho salmon (Onchorhynchus kisutch) J. Fish. Res. Bd. Can. 30:395–400

    CAS  Google Scholar 

  • Moorthy K.S., Kasi Reddy B., Swami K.S., Chetty C.S., 1985. Glucose metabolism in hepatopancreases and gill of Lamelidens marginalis during methyl parathion toxicity Pestic. Biochem. Physiol. 24:40–4

    Article  CAS  Google Scholar 

  • Morata P., Varges A.M., Pita M.L., Sanchez-Medina F., 1982. Involvement of gluconeogenesis in the hyperglycemia induced by glucose, Adrenaline and cyclic AMP in rainbow trout, Salmo gairdneri Comp. Biochem. Physiol. 73A:379–81

    Article  CAS  Google Scholar 

  • Motwani, M.P., Santimoy Banerjee, and Karamchandani, S.J. (1956). Some observations on the pollution of the river Sone by the factory effluents of the Rohtas industries at Dalmianagar (Bihar). Indian J. Fish 3, 334–67

    Google Scholar 

  • Murthy A.S., 1985. Toxicity of Pesticides to Fish, Vol. 1 CRC Press Boca Raton, FL, USA

    Google Scholar 

  • Nachlas M.M., Margulies S.P., Sellingman A.H., 1960a. A colorimetric method for the determination of lactate dehydrogenase activity J. Biol. Chem. 235:499–503

    CAS  Google Scholar 

  • Nachlas M.M., Margulies S.P., Sellingman A.H., 1960b. A colorimetric method for the estimation of succinate dehydrogenase J. Biol. Chem. 235:503–5

    Google Scholar 

  • Nakano T., Tomlinson N., 1967. Catecholamine and carbohydrate concentrations in rainbow trout (Salmo gairdneri) in relation to physical disturbance J. Fish. Res. Bd. Can. 24:1701–15

    CAS  Google Scholar 

  • O’Brien E.D., 1967. Insecticide Action and Metabolism Academic Press New York, USA

    Google Scholar 

  • Oguri M., Nace P.F., 1966. Blood sugar and adrenal histology of the goldfish after treatment with mammalian adrenocarticotrophic hormone Chem. Peak. Sci. 7:198–202

    Google Scholar 

  • Oikari A., Nakari J., 1985. Subacute physiological effects of bleached kraft mill effluent (BKME) on the liver of trout, (Salmo gairdneri) Ecotoxicol. Environ. Safety 10:159

    Article  PubMed  CAS  Google Scholar 

  • Oser, B.I. (1965). In: Hawk’s Physiological Chemistry. 14th ed. Tata McGraw Hill, New Delhi, India, 1103 pp

  • Ottolenghi C., Puviani A.C., Baruffaldi A., Gavioli M.E., Brighenti L., 1988. Glucagon control of glycogenolysis in catfish tissues Comp. Biochem. Physiol. 90B:285–90

    CAS  Google Scholar 

  • Prasad M.S., Kumari K., 1987. Toxicity of crude oil to the survival of the freshwater fish, Punctius sophore (Ham.) Acta Hydrochi. Hydrobiol. 15:29–36

    Article  CAS  Google Scholar 

  • Rajeswari K., Reddy S.J., Rafi G.M.D., Reddy S.N., Reffy D.C., 1989. Impact of thiodon on the metabolic pathway of the fish, Tilapia mossambica Environ. Ecol. 7(4):863–6

    Google Scholar 

  • Ramakrishnan, M. (1991). Effect of distillery (sugar-mill) effluent on physiology of freshwater fishes. Ph.D. Thesis submitted to Madurai Kamaraj University, Madurai, India

  • Ramakrishnan M., Elumalai M., Jayakumar R., Balasubramanian M.P., 1999. Influence of distillery effluent on feeding energetics of freshwater fishes in relation to water temperature Cytobios 98:175–87

    Google Scholar 

  • Roe P., 1961. The determination of sugar in blood and spinal fluid with anthrone reagent J. Biol. Chem. 212:335–43

    Google Scholar 

  • Sambasiva Rao K.R.S., Ahammad Sahib I.K., Sasilatha D., Ramana Rao K.V., 1986. Effects of technical and commercial grades of malathion on the oxidative metabolism of the fish, Tilapia mossambica Environ. Ecol. 4(2):270–3

    Google Scholar 

  • Sastry V., Sarita S., Pratima R., 1997. Chronic toxic effects of cadmium and copper and their combination on some enzymological and biochemical parameters in Channa punctatus J. Environ. Biol. 18(3):291–303

    CAS  Google Scholar 

  • Sastry K.V., Sunita K.M., 1984. Effects of paper mill effluent on fish life Indian J. Environ. Prot. 8(1):31–8

    Google Scholar 

  • Shaffi S.A., 1980. The acute industrial effluent toxicity to freshwater fishes Toxicol. Lett. 5:183–90

    Article  PubMed  CAS  Google Scholar 

  • Shaffi S.A., 1981. Distillery waste toxicity of metabolic dysfunctioning in nine freshwater teleost Toxicol. Lett. 8:179–86

    Article  PubMed  CAS  Google Scholar 

  • Sharma K.D., Bhatt N.M., Kantawla D., Iyengar M.R.S., 1973. Studies on aerobic cultivation of yeast to reduce pollution potential of distillery wastes Indian J. Environ. Health 15:116–8

    Google Scholar 

  • Sivakumari K., Manavalaramanujam R., Ramesh M., Lakshmi R., 1997. Cypermethrin toxicity: sublethal effects on enzyme activities in a freshwater fish, Cyprinus carpio var. communis J. Environ. Biol. 18(2):121–5

    CAS  Google Scholar 

  • Skidmore J.F., 1970. Respiration and osmoregulation in rainbow trout with gills damaged by zinc sulphate J. Exp. Biol. 52:481–94

    Google Scholar 

  • Stoner A.W., Livingston R.J., 1978. Respiration, growth and food conversion efficiency of pinfish (Lagodon rhomboides) exposed to sublethal concentrations of bleached kraft mill effluent Environ. Pollut. 17:207–17

    Article  CAS  Google Scholar 

  • Syrowatka J., 1969. Badamie Wplywu organic Zynch Zwia Zkow Cynaowych na fosfor rylacje Oksydatyujna prezepuszczalenosc bion mitochondriow watroby Scczura Roczn Panstw Zalk Hig. 20:717

    CAS  Google Scholar 

  • Usha Rani A., Ramamurthi R., 1987. Effect of sublethal concentration of cadmium on oxidative metabolism in the freshwater Teleost, Tilapia mossambica Indian J. Comp. Anim. Physiol 5(2):71–4

    Google Scholar 

  • Venkateswarlu P., Rani V.J.S., Janaiah C., Prasad M.S.K., 1987. Effect of endosulphan on carbohydrate metabolism in C. batrachus (Linn.) Comp. Anim. Physiol. 5:79–84

    Google Scholar 

  • Verma S.R., Chand R., 1986. Toxicity effects of Hg Cl2 on a few enzymes of carbohydrate metabolism of Notopterus notoperus Indian J. Environ. Health 28(1):1–7

    CAS  Google Scholar 

  • Vijayalakshmi V., Umadevi G., Prasad M., Venkatasubbiah M.C., Govindappa S., 1990. Effects of environmental acidity on tissue metabolism of freshwater fish, Cyprinus carpio (Linn.). I: Muscle Metabolism J. Environ. Biol. 11(3):269–74

    Google Scholar 

  • Wagner G.F., Mckeown B.A., 1982. Changes in plasma insulin and carbohydrate metabolism of zinc stressed rainbow trout, (Salmo gairdneri) Can. J. Zool. 60:2079

    Article  CAS  Google Scholar 

  • Wedgemeyer G., 1969. Stress-induced ascorbate depletion and cortisol production in two salmonid fishes Comp. Biochem. Physiol. 29:1247–51

    Article  Google Scholar 

  • Zar, J.H. (2004). Biostatistical Analysis. 2nd ed. Prentice-Hall International, Inc. Englewood Cliffs, New Jersey, 206 pp

Download references

Acknowledgments

We thank Dr. S. Palanichamy, and Dr. S. Arunachalam, P.G. and Research Department of Zoology, A.P.A. College, Palani, Tamilnadu for his assistance during the period of this work. The authors are grateful to the Principal, A.P.A. College of Arts and Culture, Palani 624 602, Tamilnadu for providing ample facilities to carry out this work. We thanks to the Manger, Trichy Chemicals and Distillery Ltd., Trichy, Tamilnadu for giving permission to collect the effluent during the period of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.M. Ramakritinan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakritinan, C., Kumaraguru, A. & Balasubramanian, M. Impact of Distillery Effluent on Carbohydrate Metabolism of Freshwater Fish, Cyprinus carpio . Ecotoxicology 14, 693–707 (2005). https://doi.org/10.1007/s10646-005-0019-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-005-0019-3

Keywords

Navigation