Skip to main content

Advertisement

Log in

Scalloped hammerhead shark Sphyrna lewini relative abundance comparison in three offshore marine protected areas of the Eastern Tropical Pacific

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The Eastern Tropical Pacific (ETP) is one of the last regions where large aggregations of the critically endangered scalloped hammerhead shark (Sphyrna lewini) can still be observed. In this regard, we comparatively assessed the seasonality in S. lewini’s relative abundance within three marine protected areas (MPAs) of the ETP and explored its relationship with environmental factors such as temperature. Abundance standardization via generalized linear mixed models revealed that Galapagos Islands (Ecuador) held an overall higher relative abundance of S. lewini when compared to Cocos Island (Costa Rica) and Malpelo (Colombia). The greatest relative abundance was observed from June to October for Cocos, followed by Galapagos (January, September, and November) and Malpelo (December, February, and March). Our results suggest that S. lewini observed relative abundances are significantly affected by water temperature and years (all three sites), and by the seasons, dive schedule, visibility and moon phase (to a lesser extend). This research contributes to the understanding of the temporal and spatial fluctuations of S. lewini at oceanic aggregation sites to improve the decision-making tools for the integral regional climate-smart management of the species. We recommended future studies to model the effect of climate change in the abundance at aggregation sites and potential distribution shifts across the ETP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data analyzed for this study are available from the corresponding author upon reasonable request.

Code availability

The code for this study is available from the corresponding author upon reasonable request.

References

  • Adam D, Paperno R (2007) Preliminary assessment of a nearshore nursery ground for the scalloped hammerhead off the Atlantic coast of Florida. In: McCandless CT, Kohler NE, Pratt HL (eds) Shark nursery grounds of the Gulf of Mexico and the east coast waters of the United States, vol 50. American Fisheries Society Symposium. Bethesda, Maryland, pp 165–174

    Google Scholar 

  • Alarcón I (2019) Amantes del buceo pueden ayudar a cuidar a los tiburones en Galápagos. El Comercio. Quito, Ecuador. Accessed 5 Dec 2019

  • Aldana-Moreno A, Hoyos-Padilla EM, Gonzalez-Armas R, Galvan-Magana F, Hearn A, Klimley AP, Winram W, Becerril-Garcia EE, Ketchum JT (2020) Residency and diel movement patterns of the endangered scalloped hammerhead Sphyrna lewini in the Revillagigedo National Park. J Fish Biol 96(2):543–548. https://doi.org/10.1111/jfb.14239

    Article  PubMed  Google Scholar 

  • Alvarado J, Beita-Jiménez A, Mena S, Fernández-García C, Guzmán-Mora A, Cortés J (2016) Ecosistemas coralinos del Parque Nacional Isla del Coco, Costa Rica: estructura y comparación 1987–2014. Rev Biol Trop 64:S153–S175

    Article  Google Scholar 

  • Amador JA, Durán-Quesada AM, Rivera ER, Mora G, Sáenz F, Calderón B, Mora N (2016) The easternmost tropical Pacific. Part II: seasonal and intraseasonal modes of atmospheric variability. Rev Biol Trop 64:S23–S57. https://doi.org/10.15517/rbt.v64i1.23409

    Article  Google Scholar 

  • Anderson OF (2003) CPUE analysis and stock assessment of the East Cape hills (ORH 2A North) orange roughy fishery for 2003. Ministry of Fisheries, Wellington

    Google Scholar 

  • Anislado-Tolentino V, Gallardo-Cabello M, Amezcua-Linares F, Robinson-Menoza C (2008) Age and growth of the scalloped hammerhead shark, Sphyrna lewini (Griffith & Smith, 1834) from the southern coast of Sinaloa, Mexico. Hidrobiologica 18(1):31–40

    Google Scholar 

  • Banks S (2002) Ambiente físico. In: Edgar GJ (ed) Danulat E. Reserva marina de Galápagos. línea base de la biodiversidad.Fundación Charles Darwin, Parque Nacional Galápagos, Santa Cruz, Galápagos, pp 22–37

    Google Scholar 

  • Belkin IM (2009) Rapid warming of large marine ecosystems. Prog Oceanogr 81(1–4):207–213. https://doi.org/10.1016/j.pocean.2009.04.011

    Article  Google Scholar 

  • Bernard ATF, Götz A, Kerwath SE, Wilke CG (2013) Observer bias and detection probability in underwater visual census of fish assemblages measured with independent double-observers. J Exp Mar Biol Ecol 443:75–84. https://doi.org/10.1016/j.jembe.2013.02.039

    Article  Google Scholar 

  • Bessudo S, Soler G, Klimley AP, Ketchum JT, Hearn A, Arauz R (2011) Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the Eastern Tropical Pacific. Environ Biol Fish 91(2):165–176. https://doi.org/10.1007/s10641-011-9769-3

    Article  Google Scholar 

  • Bessudo-Lion S, Álvarez-León R (2014) La ictiofauna presente en el santuario de fauna y flora, Isla Malpelo, Pacífico Oriental colombiano. Arq. Ciên. Mar, Fortaleza 47:93–101

    Google Scholar 

  • Blanco A (2013) Aplicaciones de modelos ecológicos a la gestión de recursos naturales. Universidad Pública de Navarra, Pamplona

    Book  Google Scholar 

  • Burgess SC, Marshall DJ (2011) Are numbers enough? Colonizer phenotype and abundance interact to affect population dynamics. J Anim Ecol 80(3):681–687. https://doi.org/10.1111/j.1365-2656.2010.01802.x

    Article  PubMed  Google Scholar 

  • Cambra M, Lara-Lizardi F, Penaherrera-Palma C, Hearn A, Ketchum JT, Zarate P, Chacon C, Suarez-Moncada J, Herrera E, Espinoza M (2021) A first assessment of the distribution and abundance of large pelagic species at Cocos Ridge seamounts (Eastern Tropical Pacific) using drifting pelagic baited remote cameras. PLoS One 16(11):e0244343. https://doi.org/10.1371/journal.pone.0244343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chasqui-Velasco L (2008) Capacidad de carga turistica del Parque Nacional Isla del Coco. PNUD, FFEM, Costa Rica

  • Chávez E, Arauz R, Hearn A, Nalesso E, Steiner T (2020) Asociación de tiburones con el monte submarino Las Gemelas y primera evidencia de conectividad con la Isla del Coco, Pacífico de Costa Rica. Rev Biol Trop 68(S1):S320–S329. https://doi.org/10.15517/rbt.v68iS1.41202

    Article  Google Scholar 

  • Compagno LJV, Dando M, Fowler S (2005) Sharks of the world. Princeton University Press, New Jersey

    Google Scholar 

  • Cubero-Pardo P, Herrón P, González-Pérez F (2011) Shark reactions to scuba divers in two marine protected areas of the Eastern Tropical Pacific. Aquat Conserv: Mar Freshw 21(3):239–246. https://doi.org/10.1002/aqc.1189

    Article  Google Scholar 

  • Dail D, Madsen L (2011) Models for estimating abundance from repeated counts of an open metapopulation. Biometrics 67(2):577–587. https://doi.org/10.1111/j.1541-0420.2010.01465.x

    Article  CAS  PubMed  Google Scholar 

  • Davis C (2019) The ultimate shark destination – Darwin and Wolf Islands. In: Deeper blue. https://www.deeperblue.com/the-ultimate-shark-destination-darwin-and-wolf-islands/. Accessed 5 Dec 2019

  • Dickens LC, Goatley CH, Tanner JK, Bellwood DR (2011) Quantifying relative diver effects in underwater visual censuses. PLoS One 6(4):e18965. https://doi.org/10.1371/journal.pone.0018965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dingle H (1996) Migration the biology of life on the move. Oxford University Press

  • Dunn PK, Smyth GK (2018) Generalized linear models with examples in R. Springer, New York

    Book  Google Scholar 

  • Edgar GJ, Barrett NS, Morton AJ (2004) Biases associated with the use of underwater visual census techniques to quantify the density and size-structure of fish populations. J Exp Mar Biol Ecol 308(2):269–290. https://doi.org/10.1016/j.jembe.2004.03.004

    Article  Google Scholar 

  • Enright SR, Meneses-Orellana R, Keith I (2021) The Eastern Tropical Pacific Marine Corridor (CMAR): The emergence of a voluntary regional cooperation mechanism for the conservation and sustainable use of marine biodiversity within a fragmented regional ocean governance landscape. Front Mar Sci 8. https://doi.org/10.3389/fmars.2021.674825

  • Estupiñán-Montaño C, Cedeño-Figueroa L, Galván-Magaña F (2009) Hábitos alimentarios del tiburón martillo Sphyrna lewini (Griffith & Smith, 1834) (Chondrichthyes) en el Pacífico ecuatoriano. Rev Biol Mar Oceanogr 44(2):379–386. https://doi.org/10.4067/S0718-19572009000200011

    Article  Google Scholar 

  • Feldman GC (1986) Patterns of phytoplankton production around the Galapagos Islands. In: Bowman MJ, Yentsch CM, Peterson WT (eds) Tidal Mixing and Plankton Dynamics Lecture Notes on Coastal and Estuarine Studies. Springer, New York

    Google Scholar 

  • Fiedler PC (2002) Annual cycle and biological effects of the Costa Rica Dome. Deep-Sea Res 49:321–338. https://doi.org/10.1016/S0967-0637(01)00057-7

    Article  Google Scholar 

  • Fiedler PC, Lavín MF (2017) Oceanographic Conditions of the Eastern Tropical Pacific. In: Glynn PW, Manzello DP, Enochs IC (eds) Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment. Springer Netherlands, Dordrecht, pp 59–83

    Chapter  Google Scholar 

  • Forney KA (2000) Environmental models of cetacean abundance: reducing uncertainty in population trends. Conserv Biol 14(5):1271–1286. http://www.jstor.org/stable/2641776

    Article  Google Scholar 

  • Glynn PW, Colley SB, Maté JL, Cortés J, Guzman H, Bailey RL, Feingold JS, Enochs IC (2008) Reproductive ecology of the azooxanthellate coral Tubastraea coccinea in the Equatorial Eastern Pacific. Part v Dendrophylliidae Mar Biol 153(4):529–544. https://doi.org/10.1007/s00227-007-0827-5

    Article  Google Scholar 

  • Gordon CE (2000) The coexistence of species. Rev Chil De Hist Nat 73(1):175–198. https://doi.org/10.4067/S0716-078X2000000100016

    Article  Google Scholar 

  • Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Modell 157(2–3):89–100. https://doi.org/10.1016/S0304-3800(02)00204-1

    Article  Google Scholar 

  • Hall M, Alverson D, Metuzalsc K (2000) By-catch: problems and solutions. Mar Pollut Bull 41(1–6):204–219. https://doi.org/10.1016/S0025-326X(00)00111-9

    Article  CAS  Google Scholar 

  • Harry AV, Macbeth WG, Gutteridge AN, Simpfendorfer CA (2011) The life histories of endangered hammerhead sharks (Carcharhiniformes, Sphyrnidae) from the east coast of Australia. J Fish Biol 78(7):2026–2051. https://doi.org/10.1111/j.1095-8649.2011.02992.x

    Article  CAS  PubMed  Google Scholar 

  • Harvey E, Fletcher D, Shortis M (2002) Estimation of reef fish length by divers and by stereo-video: A first comparison of the accuracy and precision in the field on living fish under operational conditions. Fish Res 57(3):255–265. https://doi.org/10.1016/s0165-7836(01)00356-3

    Article  Google Scholar 

  • Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1(3):297–310. https://doi.org/10.1214/ss/1177013604

    Article  Google Scholar 

  • Hearn A, Ketchum J, Klimley AP, Espinoza E, Peñaherrera C (2010) Hotspots within hotspots? Hammerhead shark movements around Wolf Island, Galapagos Marine Reserve. Mar Biol 157(9):1899–1915. https://doi.org/10.1007/s00227-010-1460-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Hearn A, Acuña D, Ketchum J, Peñaherrera C, Green J, Marshall A, Guerrero M, Shillinger G (2014) Elasmobranchs of the Galapagos Marine Reserve. In: Denkinger J, Vinueza L (eds) Galapagos Marine Reserve: a dynamic socio-ecological system. Springer, First edn, pp 23–59

    Chapter  Google Scholar 

  • Hinke J, Kaplan I, Aydin K, Watters G, Olson R, Kitchell J (2004) Visualizing the food-web effects of fishing for tunas in the Pacific ocean. Ecol Soc 9(1):10

    Article  Google Scholar 

  • Jacoby DMP, Croft DP, Sims DW (2012) Social behaviour in sharks and rays: analysis, patterns and implications for conservation. Fish Res 13(4):399–417. https://doi.org/10.1111/j.1467-2979.2011.00436.x

    Article  Google Scholar 

  • Jacoby DMP, Watanabe YY, Packard T, Healey M, Papastamatiou YP, Gallagher AJ (2022) First descriptions of the seasonal habitat use and residency of scalloped hammerhead (Sphyrna lewini) and Galapagos sharks (Carcharhinus galapagensis) at a coastal seamount off Japan. Anim Biotelemetry 10(1). https://doi.org/10.1186/s40317-022-00293-z

  • Jorgensen S, Klimley AP, Muhlia-Melo A (2009) Scalloped hammerhead shark Sphyrna lewini, utilizes deep-water, hypoxic zone in the Gulf of California. J Fish Biol 74:1682–1687. https://doi.org/10.1111/j.1095-8649.2009.02230.x

    Article  CAS  PubMed  Google Scholar 

  • JPL MUR MEaSUREs Project (2015) GHRSST level 4 MUR global foundation sea surface temperature analysis (v4.1). In: PO.DAAC. https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1

  • Kessler WS (2006) The circulation of the Eastern Tropical Pacific: a review. Prog Oceanogr 69(2–4):181–217. https://doi.org/10.1016/j.pocean.2006.03.009

    Article  Google Scholar 

  • Ketchum J, Hearn A, Klimley AP, Espinoza E, Peñaherrera C, Largier JL (2014a) Seasonal changes in movements and habitat preferences of the scalloped hammerhead shark (Sphyrna lewini) while refuging near an oceanic island. Mar Biol 161(4):755–767. https://doi.org/10.1007/s00227-013-2375-5

    Article  Google Scholar 

  • Ketchum JT, Hearn A, Klimley AP, Peñaherrera C, Espinoza E, Bessudo S, Soler G, Arauz R (2014b) Inter-island movements of scalloped hammerhead sharks (Sphyrna lewini) and seasonal connectivity in a marine protected area of the Eastern Tropical Pacific. Mar Biol. https://doi.org/10.1007/s00227-014-2393-y

    Article  Google Scholar 

  • Ketchum J (2011) Movement patterns and habitat use of scalloped hammerhead sharks (Sphyrna lewini) in the Galapagos Islands: implications for the design of marine reserves. PhD dissertation, University of California - Davis

  • Klimley AP (1983) Social organization of schools of the scalloped hammerhead shark, Sphyrna lewini (Griffith and Smith), in the Gulf of California. University of California, San Diego

    Google Scholar 

  • Klimley A (1993) Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar Biol 117:1–22. https://doi.org/10.1007/BF00346421

    Article  Google Scholar 

  • Klimley AP, Butler SB (1988) Immigration and emigration of a pelagic fish assemblage to seamounts in the Gulf of California related to water mass movements using satellite imagery. Mar Ecol 49:11–20

    Article  Google Scholar 

  • Klimley A, Nelson DR (1984) Diel movement patterns of the scalloped hammerhead shark (Sphyrna lewini) in relation to El Bajo Espiritu Santo: a refuging central-position social system. Behav Ecol Sociobiol 15:9. https://doi.org/10.1007/BF00310214

    Article  Google Scholar 

  • Klimley AP, Butler SB, Nelson DR, Stull AT (1988) Diel movements of scalloped hammerhead sharks, Sphyrna lewini Griffith and Smith, to and from a seamount in the Gulf of California. J Fish Biol 33:751–761. https://doi.org/10.1007/BF00310214

    Article  Google Scholar 

  • Klimley AP, Beavers S, Curtis T, Jorgensen S (2002) Movements and swimming behavior of three species of shark in La Jolla Canyon, California. Environ Biol Fish 63:117–135. https://doi.org/10.1023/A:1014200301213

    Article  Google Scholar 

  • Ladino F, Cardeñosa D, Bessudo S, Cuellar A, Muriel F, Carvajal J, Amariles D, Duarte A (2022) Monitoreo de fauna pelágica de los montes submarinos del Pacífico colombiano usando BRUVS. Biota Colombiana 24(1). https://doi.org/10.21068/2539200x.1103

  • Lawton JH (1994) Population dynamic principles. Philos Trans R Soc b: Biol Sci 344(1307):61–68. https://doi.org/10.1098/rstb.1994.0052

    Article  Google Scholar 

  • Llerena-Martillo Y, Peñaherrera-Palma C, Espinoza ER (2018) Fish assemblages in three fringed mangrove bays of Santa Cruz Island, Galapagos Marine Reserve. Rev Biol Trop 66(2). https://doi.org/10.15517/rbt.v66i2.33400

  • Loor-Andrade P, Galván-Magaña F, Elorriaga-Verplancken FR, Polo-Silva C, Delgado-Huertas A (2015) Population and individual foraging patterns of two hammerhead sharks using carbon and nitrogen stable isotopes. Rapid Commun Mass Spectrom 29(9):821–829. https://doi.org/10.1002/rcm.7169

    Article  CAS  PubMed  Google Scholar 

  • López NA, McAuley RB, Meeuwig JJ (2022) Identification of the southernmost aggregation of scalloped hammerhead sharks (Sphyrna lewini) in Australia. Austral Ecol 47(3):717–722. https://doi.org/10.1111/aec.13149

    Article  Google Scholar 

  • López-González E, Ruiz-Soler M (2011) Análisis de datos con el modelo lineal generalizado. Una aplicación con R. Rev Espanola de Pedagog 1(248):59–80

    Google Scholar 

  • Maunder MN, Punt AE (2004) Standardizing catch and effort data: a review of recent approaches. Fish Res 70(2–3):141–159. https://doi.org/10.1016/j.fishres.2004.08.002

    Article  Google Scholar 

  • McLean RA, Sanders WL, Stroup WW (1991) A unified approach to mixed linear models. Am Stat 45(1):54–64. https://doi.org/10.2307/2685241

    Article  Google Scholar 

  • Murillo-Posada JC, Salas S, Velazquez-Abunader I (2019) Factors affecting relative abundance of low-mobility fishing resources: spiny lobster in the Galapagos Marine Reserve. PeerJ 7:e7278. https://doi.org/10.7717/peerj.7278

    Article  PubMed  PubMed Central  Google Scholar 

  • Nalesso E, Hearn A, Sosa-Nishizaki O, Steiner T, Antoniou A, Reid A, Bessudo S, Soler G, Klimley AP, Lara F, Ketchum JT, Arauz R (2019) Movements of scalloped hammerhead sharks (Sphyrna lewini) at Cocos Island, Costa Rica and between oceanic islands in the Eastern Tropical Pacific. PLoS One 14(3):e0213741. https://doi.org/10.1371/journal.pone.0213741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NASA GFSC (2018) Moderate-resolution imaging spectroradiometes (MODIS) aqua ocean color data. In: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. https://oceancolor.gsfc.nasa.gov/data/aqua/. Accessed 2 Jul 2019

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc A: Stat Soc 135(3):370–384. https://doi.org/10.2307/2344614

    Article  Google Scholar 

  • Nigmatullin C (2001) A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fish Res 54:9–19. https://doi.org/10.1016/s0165-7836(01)00371-x

    Article  Google Scholar 

  • Osgood GJ, White ER, Baum JK (2021) Effects of climate-change-driven gradual and acute temperature changes on shark and ray species. J Anim Ecol. https://doi.org/10.1111/1365-2656.13560

    Article  PubMed  Google Scholar 

  • Palacios DM (2004) Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: regional and local influences. Deep-Sea Res II: Top Stud 51(1–3):43–57. https://doi.org/10.1016/j.dsr2.2003.08.001

    Article  Google Scholar 

  • Peñaherrera-Palma C, Arauz R, Bessudo S, Bravo-Ormaza M, Chassot O, Chinacalle-Martínez N, Espinoza E, Forsberg K et al (2018) Justificación biológica para la creación de la MigraVía Coco-Galápagos. MigraMar/Pontificia Universidad Católica del Ecuador Sede Manabí, Portoviejo

    Google Scholar 

  • Peñaherrera-Palma C, Van Putten I, Karpievitch YV, Frusher S, Llerena-Martillo Y, Hearn AR, Semmens JM (2018b) Evaluating abundance trends of iconic species using local ecological knowledge. Biol Conserv 225:197–207. https://doi.org/10.1016/j.biocon.2018.07.004

    Article  Google Scholar 

  • Peñaherrera-Palma C, Espinosa E, Hearn A, Ketchum J, Semmens J, Klimley P (2017) Reporte del estado poblacional de los tiburones martillo en la Reserva Marina de Galápagos. In: DPNG, CGREG, FCD, GC (eds) Informe Galápagos 2015–2016. Puerto Ayora, Galápagos, p 127–131

  • Peñaherrera-Palma C (2016) Abundance, distribution and conservation value of sharks in the Galapagos Marine Reserve. Institute for Marine and Antarctic Sciences, University of Tasmania

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1916. https://doi.org/10.1126/science.1111322

    Article  CAS  PubMed  Google Scholar 

  • Pet JS, Mous PJ, Muljadi AH, Sadovy YJ, Squire L (2005) Aggregations of Plectropomus areolatus and Epinephelus fuscoguttatus (groupers, Serranidae) in the Komodo National Park, Indonesia: Monitoring and Implications for Management. Environ Biol Fish 74(2):209–218. https://doi.org/10.1007/s10641-005-8528-8

    Article  Google Scholar 

  • Petersen SL, Honig MB, Ryan PG, Underhill LG, Compagno LJ (2010) Pelagic shark bycatch in the tuna- and swordfish-directed longline fishery off southern Africa. Afr J Mar Sci 31(2):215–225. https://doi.org/10.2989/ajms.2009.31.2.9.881

    Article  Google Scholar 

  • Punt AE, Walker TI, Taylor BL, Pribac F (2000) Standardization of catch and effort data in a spatially-structured shark fishery. Fish Res 45:129–145. https://doi.org/10.1016/S0165-7836(99)00106-X

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation fot Statistical Computing, Vienna

    Google Scholar 

  • Reilly SB (1990) Seasonal changes in distribution and habitat differences among dolphins in the Eastern Tropical Pacific. Mar Ecol Prog Ser 66:1–11. https://doi.org/10.3354/meps066001

    Article  Google Scholar 

  • Rigby CL, Dulvy NK, Barreto R, Carlson J, Fernando D, Fordham S, Francis MP, Herman K, Jabado RW, Liu KM, Marshall A, Pacoureau N, Romanov E, Sherley RB, Winker H (2019) Sphyrna lewini The IUCN Red List of Threatened Species 2019 vol Version e.T39385A2918526. International Union for the Conservation of Nature, p 2

  • Roberts CM, Hawkins JP (2000) Reservas marinas totalmente protegidas: una guía. WWF, University of York, Washington, DC, EE.UU, p 139

  • Rodriguez-Burgos AM, Briceno-Zuluaga FJ, Avila-Jimenez JL, Hearn A, Penaherrera-Palma C, Espinoza E, Ketchum J, Klimley P et al (2022) The impact of climate change on the distribution of Sphyrna lewini in the tropical eastern Pacific. Mar Environ Res 180:105696. https://doi.org/10.1016/j.marenvres.2022.105696

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Rubio E, Ortiz-Gálviz J, Rueda-Bayona J (2007) Aspectos oceanográficos. In: Suroccidente DGM-CCCdPyUAEdSdPNN-DT (ed) Santuario de Fauna y Flora Malpelo: descubrimiento en marcha. AquaDocs. Bogotá, p 29–44

  • Samoilys MA, Carlos G (2000) Determining methods of underwater visual census for estimating the abundance of coral reef fishes. Environ Biol Fish 57:289–304. https://doi.org/10.1023/A:1007679109359

    Article  Google Scholar 

  • Schmitt EF, Sullivan KM (1996) Analysis of a volunteer method for collecting fish presence and abundance data in the florida keys. Bull Mar Sci 59(2):404–416

    Google Scholar 

  • Schmitt EF, Sluka R, Sullivan-Sealey K (2002) Evaluating the use of roving diver and transect surveys to assess the coral reef fish assemblage off southeastern Hispaniola. Coral Reefs 21:216–223. https://doi.org/10.1007/s00338-002-0216-y

    Article  Google Scholar 

  • Sibaja-Cordero JA (2008) Spatial-temporal tendencies of marine faunal observations in touristic dives (Isla del Coco, Costa Rica). Rev Biol Trop 56(2):19. https://doi.org/10.15517/rbt.v56i2.27011

    Article  Google Scholar 

  • Soler GA, Bessudo S, Guzmán A (2013) Long term monitoring of pelagic fishes at Malpelo Island, Colombia. Lat Am J Conserv 3(2):28–37

    Google Scholar 

  • Stewart JS, Hazen EL, Bograd SJ, Byrnes JE, Foley DG, Gilly WF, Robison BH, Field JC (2014) Combined climate- and prey-mediated range expansion of Humboldt squid (Dosidicus gigas), a large marine predator in the California Current System. Glob Chang Biol 20(6):1832–1843. https://doi.org/10.1111/gcb.12502

    Article  PubMed  Google Scholar 

  • Thresher RE, Gunn JS (1986) Comparative analysis of visual census techniques for highly mobile, reef-associated piscivores (Carangidae). Environ Biol Fish 17(2):93–116. https://doi.org/10.1007/bf00001740

    Article  Google Scholar 

  • Trenberth KE et al (2007) Observations: surface and atmospheric climate change. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York

  • Venables WN, Dichmont CM (2004) GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fish Res 70(2–3):319–337. https://doi.org/10.1016/j.fishres.2004.08.011

    Article  Google Scholar 

  • Vrieze SI (2012) Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods 17(2):228–243. https://doi.org/10.1037/a0027127

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh SJ, Mena CF (2016) Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador. Proc Natl Acad Sci U S A 113(51):14536–14543. https://doi.org/10.1073/pnas.1604990113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward-Paige CA, Lotze HK (2011) Assessing the value of recreational divers for censusing elasmobranchs. PLoS One 6(10):e25609. https://doi.org/10.1371/journal.pone.0025609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson RA, Quinn TJ (1997) Performance of transect and point count underwater visual census methods. Ecol Modell 104:103–112. https://doi.org/10.1016/S0304-3800(97)00117-8

    Article  Google Scholar 

  • White ER, Myers MC, Flemming JM, Baum JK (2015) Shifting elasmobranch community assemblage at Cocos Island-an isolated marine protected area. Conserv Biol. https://doi.org/10.1111/cobi.12478

    Article  PubMed  Google Scholar 

  • White TD, Carlisle AB, Kroodsma DA, Block BA, Casagrandi R, De Leo GA, Gatto M, Micheli F, McCauley DJ (2017) Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol Conserv 207:64–71. https://doi.org/10.1016/j.biocon.2017.01.009

    Article  Google Scholar 

  • Williams ID, Walsh WJ, Tissot BN, Hallacher LE (2006) Impact of observers experience level on counts of fishes in underwater visual surveys. Mar Ecol Prog Ser 310:185–191

    Article  Google Scholar 

  • Yamada H, Tagaki N, Nishimura D (2006) Recruitment abundance index of Pacific bluefin tuna using fisheries data on juveniles. Fish Sci 72(2):333–341. https://doi.org/10.1111/j.1444-2906.2006.01154.x

    Article  CAS  Google Scholar 

  • Ye Y, Chen Y, Dennis D (2009) How reliable are the abundance indices derived from commercial catch–effort standardization? Can J Fish Aquat Sci 66(7):1169–1178. https://doi.org/10.1139/f09-070

    Article  Google Scholar 

  • Yu H, Jiao Y, Carstensen LW (2013) Performance comparison between spatial interpolation and GLM/GAM in estimating relative abundance indices through a simulation study. Fish Res 147:186–195. https://doi.org/10.1016/j.fishres.2013.06.002

    Article  Google Scholar 

  • Zanella I, López A, Arauz R (2010) La alimentación de tiburones martillo jóvenes (Sphyrna lewini) capturados en el golfo de Nicoya, Costa Rica. vol 39. INVEMAR, Santa Marta, Colombia, p 447–453

  • Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Zevallos-Rosado J, Chinacalle-Martínez N, Carlos Murillo-Posada JC, Veelenturf C, Peñaherrera-Palma C (Accepted) A comparative analysis of spatiotemporal trends in sea surface temperature in the major marine protected areas of the Eastern Tropical Pacific. Rev Biol Mar Oceanogr 58(2).

  • Zhang X (2022) Predicting global seasonal distributions and population exchange routes of a critically endangered shark. Biol Conserv 275. https://doi.org/10.1016/j.biocon.2022.109771

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed model effects and extensions in ecology with R. Springer, Los Angeles, CA, USA

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Iris & Michael Smith, Lindblad Expeditions, National Geographic, the Secretariat for Higher Education, Science, Technology and Innovation of the Ecuadorean Government; Blake, Kimberly and George Rapier Charitable Trust; the Directorate of the Galapagos National Park; Galapagos Conservancy; Galapagos Conservation Trust; National Parks of Colombia; Patrimonial Fund of Colombia; Undersea Hunter and National Parks of Costa Rica for the funding and support in all the stages of this work. Also, we would like to thank to Callie Veelenturf, Juan Carlos Murillo, and Abel Trejo for the assistance, help and revisions during the development of this research.

Funding

This work was supported partially by Iris & Michael Smith; Lindblad Expeditions; National Geographic; the Secretariat for Higher Education, Science, Technology and Innovation of the Ecuadorean Government; Blake, Kimberly and George Rapier Charitable Trust; the Directorate of the Galapagos National Park; Galapagos Conservancy; Galapagos Conservation Trust; National Parks of Colombia; Patrimonial Fund of Colombia and Undersea Hunter.

Author information

Authors and Affiliations

Authors

Contributions

E.B.—conceived the research, the ideas to explain the results, developed the data analysis, structured the manuscript and led its writing. R.A.—developed the data collection, helped in the writing of the manuscript and was part of the funding. S.B.—developed the data collection, helped in the writing of the manuscript and was part of the funding. A.H.—developed the data collection, helped in the writing of the manuscript and was part of the funding. A.P.K.—developed the data collection, revised and re-drafted the article critically for important intellectual content and the final approval of the version to be submitted for publication. F.L.—developed the data collection, helped in the writing of the manuscript and was part of the funding. J.L.—contributed with new data analysis and manuscript writing. T.S.—developed the data collection, helped in the writing of the manuscript and was part of the funding. C.P.—developed the data collection, conceived the research, the ideas to explain the results, developed the data analysis, structured the manuscript, and led its writing.

Corresponding author

Correspondence to Estefanía Bravo-Ormaza.

Ethics declarations

Ethics approval

No animals were handled or experimented on during any part of this research. Our underwater visual survey methods complied with animal welfare laws, guidelines, and policies as approved by the University of Tasmania Animal Ethics Committee (permit number A13641), by the Institutional Animal Care and Use Committee of the University of California – Davis (permit number IACUC PROTOCOL #16022), by the Directorate of the Galapagos National Park (permit number PC-60-13), by Cocos Island Marine Conservation Area (ACMIC) from National System of Conservation Area (SINAC) of Costa Rica (permit number ACMIC-008, ACMIC-012, ACMIC-006, ACMIC-001), and by the Ministry of Environment and Sustainable Development of Colombia (permit number DTPA 002-18).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5315 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo-Ormaza, E., Arauz, R., Bessudo, S. et al. Scalloped hammerhead shark Sphyrna lewini relative abundance comparison in three offshore marine protected areas of the Eastern Tropical Pacific. Environ Biol Fish 106, 1767–1784 (2023). https://doi.org/10.1007/s10641-023-01454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-023-01454-6

Keywords

Navigation