Skip to main content

Advertisement

Log in

Natural history and trophic ecology of three populations of the Mexican cavefish, Astyanax mexicanus

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The Mexican cavefish, Astyanax mexicanus (Characidae), has become an important model in evolutionary physiology and developmental biology, providing insights into the evolution of sensory systems, pigmentation, and metabolism. In contrast, comparatively little is known about the natural history and trophic ecology of this elusive cave inhabitant. We investigated cavefish from three independently colonized cave systems (Pachón, Tinaja, and Sabinos), which are located in the Sierra de El Abra of northeastern Mexico. Samples were collected multiple times throughout the year to investigate variation in body size, sex ratios, proportions of individuals with empty guts, and diet composition. We found consistent differences in body size among caves, and sex ratios were generally female biased, although to varying degrees. Gut content analyses indicated that cavefish consume food throughout the year, and diets are dominated by detritus, plant materials, and aquatic invertebrates. Especially in the Pachón cave, where we had the densest sampling, there was evidence for seasonal changes in diet composition that coincided with the rainy and dry seasons. Our findings potentially suggest that the cave environments in this system are characterized by continual nutrient limitation, rather than intermittent periods of starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data associated with this manuscript will be made available in a public repository (Dryad) upon acceptance of the manuscript or can be obtained directly from the corresponding authors.

References

  • Aspiras AC, Rohner N, Martineau B, Borowsky RL, Tabin CJ (2015) Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci U S A 112:9668–9673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avise JC, Selander RK (1972) Evolutionary genetics of cave-dwelling fishes of the genus Astyanax. Evolution 26:1–19

    PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Behrmann-Godel J, Nolte AW, Kreiselmaier J, Berka R, Freyhof J (2017) The first European cave fish. Curr Biol 27:R257–R258

    Article  CAS  PubMed  Google Scholar 

  • Beladjal L, Vandekerckhove TTM, Muyssen B, Heyrman J, de Caesermaeker J, Mertens J (2002) B-chromosomes and male-biased sex ratio with paternal inheritance in the fairy shrimp Branchipus schaefferi (Crustacea, Anostraca). Heredity 88:356–360

    Article  CAS  PubMed  Google Scholar 

  • Blanckenhorn WU (2000) The evolution of body size: what keeps organisms small? Quart Rev Biol 75:385–407

    Article  CAS  PubMed  Google Scholar 

  • Borowsky R (2008) Determining the sex of adult Astyanax mexicanus. Cold Spring Harb Protoc 2008:pdb.prot5090

    Article  Google Scholar 

  • Bradic M, Beerli P, García-de León FJ, Esquivel-Bobadilla S, Borowky RL (2012) Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol Biol 12:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Christiansen K (2012) Morphological adaptations. In: Culver DC, White WB (eds) Encyclopedia of caves, 2nd ed. Elsevier Academic Press, Amsterdam, pp 517–528

  • Clark FE, Kocher TD (2019) Changing sex for selfish gain: B chromosomes of Lake Malawi cichlid fish. Sci Rep 9:20213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelio D, Castro JP, Santos MH, Vicari MR, de Almeida MC, Moreira-Filho O, Camacho JP, Artoni RF (2017) Hermaphroditism can compensate for the sex ratio in the Astyanax scabripinnis species complex (Teleostei: Characidae): expanding the B chromosome study model. Rev Fish Biol Fish 27:681–689

    Article  Google Scholar 

  • Culver DC, Holsinger JR (1969) Preliminary observations on sex ratios in the subterranean amphipod genus Stygonectes (Gammaridae). Am Midl Nat 82:631–633

    Article  Google Scholar 

  • Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves. Harvard University Press, Cambridge

  • Enyidi U, Kiljunen M, Jones RI, Pirhonen J (2013) Nutrient assimilation by first-feeding African catfish, Clarias gariepinus, assessed using stable isotope analysis. J World Aquac Soc 44:161–172

    Article  CAS  Google Scholar 

  • Espinasa L, Borowsky RB (2001) Origins and relationship of cave populations of the blind Mexican tetra, Astyanax fasciatus, in the Sierra de El Abra. Environ Biol Fish 62:233–237

    Article  Google Scholar 

  • Espinasa L, Bibliowicz J, Jeffery WR, Rétaux S (2014) Enhanced prey capture skills in Astyanax cavefish larvae are independent from eye loss. EvoDevo 5:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinasa L, Bonaroti N, Wong J, Pottin K, Queinnec E, Rétaux S (2017) Contrasting feeding habits of post-larval and adult Astyanax cavefish. Subterr Biol 21:1–17

    Article  Google Scholar 

  • Espinasa L, Legendre L, Fumey J, Blin M, Rétaux S, Espinasa M (2018) A new cave locality for Astyanax cavefish in Sierra de El Abra, Mexico. Subterr Biol 26:39–53

    Article  Google Scholar 

  • Espino del Castillo A, Castaño G, Davila-Montes M, Miranda-Anaya M, Morales-Malacara JB, Paredes-León R (2009) Seasonal distribution and circadian activity in the troglophile long-footed robber frog, Eleutherodactylus longipes (Anura: Brachycephalidae) at Los Riscos cave, Querétaro, Mexico: field and laboratory studies. J Cave Karst Stud 71:24–31

    Google Scholar 

  • Fenolio DB, Graening GO, Collier BA, Stout JF (2006) Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proc R Soc B 273:439–443

    Article  CAS  PubMed  Google Scholar 

  • Frank SA (1990) Sex allocation theory for birds and mammals. Ann Rev Ecol Syst 21:13–55

    Article  Google Scholar 

  • Franz-Odendaal TA, Hall BK (2006) Modularity and sense organs in the blind cavefish, Astyanax mexicanus. Evol Dev 8:94–100

    Article  CAS  PubMed  Google Scholar 

  • Frøland Steindal IA, Beale AD, Yamamoto Y, Whitmore D (2018) Development of the Astyanax mexicanus circadian clock and non-visual light responses. Dev Biol 441:345–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Fryxell DC, Arnett HA, Apgar TM, Kinnison MT, Palkovacs EP (2015) Sex ratio variation shapes the ecological effects of a globally introduced freshwater fish. Proc R Soc B 282:20151970

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross JB (2012) The complex origin of Astyanax cavefish. BMC Evol Biol 12:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Hervant F (2012) Starvation in subterranean species versus surface-dwelling species: crustaceans, fish, and salamanders. In: McCue MD (ed) Comparative Physiology of Fasting, Starvation, and Food Limitation. Springer, Berlin, Heidelberg, pp 91–102

    Chapter  Google Scholar 

  • Hervant F, Renault D (2002) Long-term fasting and realimentation in hypogean and epigean isopods: a proposed adaptive strategy for groundwater organisms. J Exp Biol 205:2079–2087

    Article  CAS  PubMed  Google Scholar 

  • Hinaux H, Devos L, Blin M, Elipot Y, Bibliowicz J, Alié A, Rétaux S (2016) Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation. Development 143:4521–4532

    Article  CAS  PubMed  Google Scholar 

  • Hollister JW (2021) elevatr: access elevation data from various APIs. R package version 0.4.1. https://CRAN.R-project.org/package=elevatr/

  • Hüppop K (1985) The role of metabolism in the evolution of cave animals. Natl Speleol Soc Bull 47:136–146

    Google Scholar 

  • Hüppop K (1986) Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): a comparison of epigean and hypogean populations. Environ Biol Fish 17:299–308

    Article  Google Scholar 

  • Hüppop K (1987) Food-finding ability in cave fish (Astyanax fasciatus). Int J Seleol 16:59–66

    Article  Google Scholar 

  • Imarazene B, Beille S, Jouanno E, Branthonne A, Thermes V, Thomas M, Herpin A, Rétaux S, Guiguen Y (2020) Primordial germ cell migration and histological and molecular characterization of gonadal differentiation in Pachón cavefish Astyanax mexicanus. Sex Dev 14:80–98

    Article  CAS  PubMed  Google Scholar 

  • Imarazene B, Du K, Beille S, Jouanno E, Feron R, Pan, Q, Torres-Paz, J, Lopez-Roques C, Castinel A, Gil L, Kuchly C, Donnadieu C, Parrinello H, Journot L, Cabau C, Zahm M, Klopp C, Pavlica T, Al-Rikabi A, Liehr T, Simanovsky SA, Bohlen J, Sember A, Perez J, Veyrunes F, Mueller TD, Postlethwait JH, Schartl M, Herpin A, Rétaux S, Guiguen Y (2021) A supernumerary “B-sex” chromosome drives male sex determination in the Pachón cavefish, Astyanax mexicanus. Curr Biol 31:1–10

  • Jeffery WR (2009) Regressive evolution in Astyanax cavefish. Ann Rev Genet 43:25–47

    Article  CAS  PubMed  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trend Ecol Evol 19:101–108

    Article  Google Scholar 

  • Kasumyan AO, Marusov EA (2015) Chemoorientation in the feeding behavior of the blind Mexican cavefish Astyanax fasciatus (Characidae, Teleostei). Russ J Ecol 46:559–563

    Article  CAS  Google Scholar 

  • Keene A, Yoshizawa M, McGaugh SE (2015) Biology and evolution of the Mexican cavefish. Academic Press, Waltham

    Google Scholar 

  • Konec M, Prevorčnik S, Sarbu SM, Verovnik R, Trontelj P (2015) Parallels between two geographically and ecologically disparate cave invasions by the same species, Asellus aquaticus (Isopoda, Crustacea). J Evol Biol 28:864–875

    Article  CAS  PubMed  Google Scholar 

  • Kowalko J (2020) Utilizing the blind cavefish Astyanax mexicanus to understand the genetic basis of behavioral evolution. J Exp Biol 223:jeb208835

    Article  PubMed  Google Scholar 

  • Kowalko JE, Rohner N, Linden TA, Rompano SB, Warren WC, Borowsky R, Tabin CJ, Jeffery WR, Yoshizawa M (2013) Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci U S A 110:16933–16938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H-J, Kao W-Y, Wang Y-T (2007) Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan. Estuar Coast Shelf Sci 73:527–537

    Article  Google Scholar 

  • McArdle BH, Anderson ML (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • Miller RR, Minckley WL, Norris SM (2005) Freshwater fishes of Mexico. University of Chicago Press, Chicago

    Google Scholar 

  • Mitchell RW, Elliott WR, Russell WH (1977) Mexican eyeless characin fishes, genus Astyanax: environment, distribution, and evolution. Spec Publ Mus Tex Tech 12:1–89

    Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Collins Johnson N, McCann KS, Melville KS, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  • Moran D, Softley R, Warrant EJ (2014) Eyeless Mexican cavefish save energy by eliminating the circadian rhythm in metabolism. PLoS One 9:e107877

    Article  PubMed  PubMed Central  Google Scholar 

  • Natri HM, Merilä J, Shikano T (2019) The evolution of sex determination associated with a chromosomal inversion. Nat Commun 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community ecology package. Version R package version 2.5–7. https://CRAN.R-project.org/package=vegan

  • Passow CN, Greenway R, Arias-Rodriguez L, Jeyasingh PD, Tobler M (2015) Reduction of energetic demands through modification of body size and routine metabolic rates in extremophile fish. Physiol Biochem Zool 88:371–383

    Article  PubMed  Google Scholar 

  • Pérez-Rodríguez R, Esquivel-Bobadilla S, Orozco-Ruíz AM, Olivas-Hernández JL, García-De-León FJ (2021) Genetic structure and historical and contemporary gene flow of Astyanax mexicanus in the Gulf of Mexico slope: a microsatellite-based analysis. PeerJ 9:e10784

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter ML, Crandall KA (2003) Lost along the way: the significance of evolution in reverse. Trend Ecol Evol 18:541–547

    Article  Google Scholar 

  • Premate E, Borko Š, Kralj-Fišer S, Jennions M, Fišer Ž, Balázs G, Bíró A, Bračko G, Copilaş‐Ciocianu D, Hrga N, Herczeg G, Rxhepi B, Zagmajster M, Zakšek V, Fromhage L, Fišer C (2021) No room for males in caves: female-biased sex ratio in subterranean amphipods of the genus Niphargus. J Evol Biol 34:1653–1661

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Reichard M, Polačik M, Blažek R, Vrtílek M (2014) Female bias in the adult sex ratio of African annual fishes: interspecific differences, seasonal trends and environmental predictors. Evol Ecol 28:1105–1120

    Article  Google Scholar 

  • Rétaux S, Casane D (2013) Evolution of eye development in the darkness of caves: adaptation, drift, or both? EvoDevo 4:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Riddle MR, Aspiras AC, Gaudenz K, Peuss R, Sung JY, Martineau B, Peavey M, Box AC, Tabin JA, McGaugh S, Borowsky R, Tabin CJ, Rohner N (2018) Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature 555:647–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddle MR, Boesmans W, Caballero O, Kazwiny Y, Tabin CJ (2018) Morphogenesis and motility of the Astyanax mexicanus gastrointestinal tract. Dev Bio 441:285–296

  • Roach KA, Tobler M, Winemiller KO (2011) Hydrogen sulfide, bacteria, and fish: a unique, subterranean food chain. Ecology 92:2056–2062

    Article  PubMed  Google Scholar 

  • Secor SM (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179:1–56

    Article  PubMed  Google Scholar 

  • Simon V, Elleboode R, Mahé K, Legendre L, Ornelas-Garcia P, Espinasa L, Rétaux S (2017) Comparing growth in surface and cave morphs of the species Astyanax mexicanus: insights from scales. EvoDevo 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares D, Niemiller ML (2013) Sensory adaptations of fishes to subterranean environments. Bioscience 63:274–283

    Article  Google Scholar 

  • South A (2017) rnaturalearth: world map data from Natural Earth. R package version 0.1.0. https://CRAN.R-project.org/package=rnaturalearth

  • Tobler M (2008) Divergence in trophic ecology characterizes colonization of extreme habitats. Biol J Linn Soc 95:517–528

    Article  Google Scholar 

  • Tobler M, Riesch RW, Tobler CM, Plath M (2009) Compensatory behaviour in response to sulphide-induced hypoxia affects time budgets, feeding efficiency, and predation risk. Evol Ecol Res 11:935–948

    Google Scholar 

  • Tobler M, Scharnweber K, Greenway R, Passow CN, Arias-Rodriguez L, García-De-León (2015) Convergent changes in the trophic ecology of extremophile fish along replicated environmental gradients. Freshw Biol 60:768–780

    Article  Google Scholar 

  • Trajano E (2001) Ecology of subterranean fishes: an overview. Environ Biol Fish 62:133–160

    Article  Google Scholar 

  • Whelan CJ, Brown JS (2005) Optimal foraging and gut constraints: reconciling two schools of thought. Oikos 110:481–496

    Article  Google Scholar 

  • Wilkens H, Burns RJ (1972) A new Anoptichthys cave population (Characidae, Pisces). Ann Spéléol 27:263–270

    Google Scholar 

  • World Weather Online (2021) Tampico Monthly Climate Averages 2009-present. In: WorldWeatherOnline.com. https://www.worldweatheronline.com/tampico-weather/tamaulipas/mx.aspx. Accessed 30 Aug 2021

  • Xiong S, Krishnan J, Peuß R, Rohner N (2018) Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev Biol 441:297–304

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Terai Y, Mizoiri S, Aibara M, Nishihara H, Watanabe M, Kuroiwa A, Hirai H, Hirai Y, Matsuda Y, Okada N (2011) B chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes. PLoS Genet 7:e1002203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshizawa M, Gorički Š, Soares D, Jeffery WR (2010) Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol 20:1631–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Collection permits provided by the Mexican government (DGOPA.05003.181010-5003; DGOPA.00570.288108-0291; DAPA/2/130409/0961, 230401-613-03). FJGdL thanks the Instituto Tecnológico de Ciudad Victoria and its students who enthusiastically participated in the field collections.

Funding

The field collections were financed by FJGdL. The study was also supported by a grant from the National Science Foundation (IOS-1931657 to MT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. J. Wilson or F. J. García-De León.

Ethics declarations

Ethics approval

Our study was conducted at the Technological Institute of Ciudad Victoria (ITCV) in Tamaulipas, México, where despite the lack of any animal care protocol, the animals were all collected under standard care procedures. Authors are responsible for correctness of the statements provided in the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, E.J., Tobler, M., Riesch, R. et al. Natural history and trophic ecology of three populations of the Mexican cavefish, Astyanax mexicanus. Environ Biol Fish 104, 1461–1474 (2021). https://doi.org/10.1007/s10641-021-01163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-021-01163-y

Keywords

Navigation