Skip to main content
Log in

Feeding trends of Psalidodon paranae in an impacted Neotropical basin: a multifactor and integrative approach

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Psalidodon paranae is an endemic small Characidae from the Upper Paraná River ecoregion (Neotropical region, Brazil), where many watercourses are affected by anthropic activities. The Verde River (VR) was chosen as a model to study the feeding trends of P. paranae. Based on empirical observations, hypotheses were set concerning its occurrence, the environmental representativeness of its diet and the multifactors modulating ontogenetic, spatial, and temporal diet variations. To evaluate these hypotheses for the first time, an integrative approach was applied (modelling and multivariate techniques). Standardized samplings were performed monthly during one year at four sites. Influence of environmental variables on fish distribution was evaluated by means a general linear model. Stomach content analysis of P. paranae allowed the calculation of gravimetric frequency of consumed food categories. Ontogenetic, spatial, and temporal differences on diet were evaluated by means a permutational multivariate analysis of variance, and the influence of environmental variables on them with a canonical correspondence analysis. From the total of 301 specimens caught (4.6–13.4 cm total length range), 216 individuals of P. paranae presented stomach with contents. The species consumed 32 different food categories in VR, highlighting aquatic and terrestrial angiosperms, and beetles. The methods applied identified significative spatial and temporal differences in P. paranae diet as result of multifactors (palaeogeomorphology, abiotic, biotic, and anthropic) operating in the VR. Heterogeneity and complexity of VR and P. paranae occurrence and feeding trends evidenced that the opportunistic and generalist behavior lead to intrinsic patterns of each fish population at each watercourse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

Data availability

Not applicable.

References

  • Abelha FCM, Agostinho AA, Goulart E (2001) Plasticidade trófica de peixes de água doce. Acta Sci 23:425–434. https://doi.org/10.4025/actascibiolsci.v23i0.2696

    Article  Google Scholar 

  • Abelha FCM, Goulart E, Kashiwaqui EAL, Silva MR (2006) Astyanax paranae Eigenmann, 1914 (Characiformes: Characidae) in the Alagados reservoir, Paraná, Brazil: diet composition and variation. Neotrop Ichthyol 4:349–356. https://doi.org/10.1590/S1679-62252006000300006

    Article  Google Scholar 

  • Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Pérez MHS, Petry P (2008) Freshwater Ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 5:403–414. https://doi.org/10.1641/B580507

    Article  Google Scholar 

  • Agostinho AA, Pelicice FM, Petry AC, Gomes LC (2007) Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquat Ecosyst Health 10:174–186. https://doi.org/10.1080/14634980701341719

    Article  Google Scholar 

  • Ahlbeck I, Hansson S, Hjerne O (2012) Evaluating fish diet analysis methods by individual-based modelling. Can J Fish Aquat Sci 69:1184–1201. https://doi.org/10.1139/f2012-051

    Article  CAS  Google Scholar 

  • Albert JS, Petry P, Reis RE (2011) Major biogeographical and phylogenetic patterns. In: Albert JS, Reis RE (eds) Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, pp 21–58

    Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  • Anderson MJ (2014) Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef:1–15. https://doi.org/10.1002/9781118445112.stat07841

  • Araujo-Lima CARM, Oliveira EC (1998) Transport of larval fish in the Amazon. J Fish Biol 53:297–306. https://doi.org/10.1111/j.1095-8649.1998.tb01033.x

    Article  Google Scholar 

  • Baird RB, Eaton AD, Rice EW (2017) Standard methods for the examination of water and wastewater. 23rd. ed. American Public Health Association, Washington

    Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish. US. Environmental Protection Agency, Washington

    Google Scholar 

  • Bennemann ST, Gealh AM, Orsi ML, Souza LM (2005) Ocorrência e ecologia trófica de quatro espécies de Astyanax (Characidae) em diferentes rios da bacia do rio Tibagi, Paraná, Brasil. Iheringia Ser Zool 95:247–254. https://doi.org/10.1590/S0073-47212005000300004

    Article  Google Scholar 

  • Bhering SB, Santos HG, Manzatto CV, Bognola IA, Fasolo PJ, Carvalho AP, Potter RO, Aglio ML, Silva JS, Chaffin CE, Carvalho Junior W (2007) Mapa de solos do Estado do Paraná. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  • Bicudo CE, Bicudo RMT (1970) Algas de águas continentais brasileiras. Fundação Brasileira para o Desenvolvimento do Ensino de Ciências, São Paulo

    Google Scholar 

  • Bleich ME, Piedade MTF, Mortati AF, André T (2015) Autochthonous primary production in southern Amazon headwater streams: novel indicators of altered environmental integrity. Ecol Indic 53:154–161. https://doi.org/10.1016/j.ecolind.2015.01.040

    Article  Google Scholar 

  • Burrell TK, O'Brien JM, Graham SE, Simon KS, Harding JS, McIntosh AR (2014) Riparian shading mitigates stream eutrophication in agricultural catchments. Freshw Sci 33:73–84. https://doi.org/10.1086/674180

    Article  Google Scholar 

  • Carvalho DR, Castro D, Callisto M, Moreira MZ, Pompeu PS (2015) Isotopic variation in five species of stream fishes under the influence of different land uses. J Fish Biol 87:559–578. https://doi.org/10.1111/jfb.12734

    Article  CAS  PubMed  Google Scholar 

  • Casatti L, Langeani F, Silva AM, Castro RMC (2006) Stream fish, water and habitat quality in a pasture dominated basin, southeastern Brazil. Braz J Biol 66:681–696. https://doi.org/10.1590/S1519-69842006000400012

    Article  CAS  PubMed  Google Scholar 

  • CCME (1999) Canadian water quality guidelines for the protection of aquatic life: dissolved oxygen. Canadian Environmental Quality Guidelines, Winnipeg, Canada

    Google Scholar 

  • CCME (2002) Canadian water quality guidelines for the protection of aquatic life: Total particulate matter. Canadian Environmental Quality Guidelines, Winnipeg, Canada

    Google Scholar 

  • Ceneviva-Bastos M, Casatti L (2014) Shading effects on community composition and food web structure of a deforested pasture stream: evidences from a field experiment in Brazil. Limnologica 46:9–21. https://doi.org/10.1016/j.limno.2013.11.005

    Article  Google Scholar 

  • Chipps SR, Garvey JE (2007) Assessment of diets and feeding patterns. In: Guy CS, Brown ML (eds) Analysis and interpretation of freshwater fish data. American Fisheries Society, Bethesda, pp 473–514

    Google Scholar 

  • Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos: sistemática y biología. Fundación Miguel Lillo, Tucumán

    Google Scholar 

  • Esteves KE (1996) Feeding ecology of three Astyanax species (Characidae, Tetragonopterinae) from a floodplain lake of Mogi-Guagu River, Parana River basin, Brazil. Environ Biol Fish 46:83–101. https://doi.org/10.1007/BF00001701

    Article  Google Scholar 

  • Fauconnet L, Trenkel VM, Morandeau G, Caill-Milly N, Rochet M-J (2015) Characterizing catches taken by different gears as a step towards evaluating fishing pressure on fish communities. Fish Res 164:238–248. https://doi.org/10.1016/j.fishres.2014.11.019

    Article  Google Scholar 

  • Ferreira KM (2007) Biology and ecomorphology of stream fishes from the rio Mogi-Guaçu basin, southeastern Brazil. Neotrop Ichthyol 5:311–326. https://doi.org/10.1590/S1679-62252007000300012

    Article  Google Scholar 

  • Ferreira A, Gerhard P, Cyrino JEP (2012) Diet of Astyanax paranae (Characidae) in streams with different riparian land covers in the Passa-Cinco River basin, southeastern Brazil. Iheringia Ser Zool 102:80–87. https://doi.org/10.1590/S0073-47212012000100011

    Article  Google Scholar 

  • Fox J, Weisberg S (2019) An R companion to applied regression. 3rd ed. Sage, Thousand Oaks. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. Accessed 06 December 2019

  • Fricke R, Eschmeyer WN, Van der Laan R (2020). Eschmeyer's catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed 29 December 2020

  • Garvey JE, Chipps SR (2012) Diets and energy flow. In: Zale AV, Parrish DL, Sutton TM (eds) Fisheries techniques, 3rd edn. American Fisheries Society, Bethesda, pp 733–779

    Google Scholar 

  • Garutti V, Britski HA (2000) Descrição de uma nova espécie de Astyanax (Teleostei: Characidae) da bacia do Alto Paraná e considerações sobre as demais espécies do gênero na bacia. Comun Mus Ciênc Tecnol PUCRS Ser Zool 13:65–88

    Google Scholar 

  • Gealh AM, Silveira EL (2014) Conhecendo os peixes do rio. In: Gealh AM, Melo MS (eds) Rio São João, Carambeí-Pr: Fonte de vida, cuidados devidos. Editora UEPG, Ponta Grossa, pp 181–203

    Google Scholar 

  • Gelwick FP, McIntyre PB (2017) Trophic relations of stream fishes. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Volume 1: Ecossystem structure. 3rd ed. Academic Press, London

    Google Scholar 

  • Gerking SD (1994) Feeding ecology of fish. Academic Press, San Diego

    Google Scholar 

  • Gotelli NJ, Ellison AM (2013) A primer of ecological statistics. 2nd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Guimarães GB, Godoy LC, Melo MS, Flügel Filho JC (2014) Geodioversidade. In: Gealh AM, Melo MS (eds) . Pr: fonte de vida, cuidados devidos. Editora UEPG, Ponta Grossa, Rio São João, pp 15–37

    Google Scholar 

  • Hamada N, Nessimian JL, Querino RB (2014) Insetos aquáticos na Amazônia Brasileira: taxonomia, biologia e ecologia. INPA, Manaus

    Google Scholar 

  • Hartig F (2020) DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.3.2.0. https://CRAN.R-project.org/package=DHARMa. Accessed 06 December 2019

  • Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities — the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58:157–170. https://doi.org/10.1139/cjfas-58-1-157

    Article  Google Scholar 

  • Jones JI, Murphy JF, Collins AL, Sear DA, Nadend PS, Armitagee PD (2012) The impact of fine sediment on macro-invertebrates. River Res App 28:1055–1071. https://doi.org/10.1002/rra.1516

    Article  Google Scholar 

  • Krebs C (2014) Ecological methodology, 3rd edn. Updated 14 march 2014. https://www.zoology.ubc.ca/~krebs/books.html. Accessed March 2014.

  • Lagler KL (1978) Capture, samplings and examination of fishes. In: Bagenal TB (ed) Methods for assessment of fish production in fresh waters, 3th edn. Blackwell Scientific Publications, Oxford, pp 7–47

    Google Scholar 

  • Langeani F, Castro RMC, Oyakawa OT, Shibatta OA, Pavanelli CS, Casatti L (2007) Ichthyofauna diversity of the upper rio Paraná: present composition and future perspectives. Biota Neotrop 7:181–197. https://doi.org/10.1590/S1676-06032007000300020

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. 3nd ed. Elsevier, Amsterdam

  • Leite GFM, Silva FTC (2018) Effects of temporal changes on resource availability in the diet of Astyanax paranae (Pisces, Characidae) in tropical headwater streams. Limnetica 37:117–128. https://doi.org/10.23818/limn.37.10

    Article  Google Scholar 

  • Lowe-McConnell RH (1987) Ecological studies in tropical fish communities. University Press, Cambridge

    Book  Google Scholar 

  • Mangiafico S (2019) rcompanion: functions to support extension education program evaluation. R package version 2.3.21. https://cran.r-project.org/web/packages/rcompanion/index.html. Accessed 06 December 2019

  • Matthews WJ (1998) Patterns in freshwater fish ecology. Springer-Science+Business Media, Dordretch

    Book  Google Scholar 

  • Mazzoni R, Mendonça RS, Caramaschi EP (2005) Reproductive biology of Astyanax janeiroensis (Osteichthyes, Characidae) from the Ubatiba River, Maricá, RJ, Brazil. Braz J Biol 65:643–649. https://doi.org/10.1590/S1519-69842005000400012

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni R, Nery LL, Iglesias-Rio R (2010) Ecologia e ontogenia da alimentação de Astyanax janeiroensis (Osteichthyes, Characidae) de um riacho costeiro do Sudeste do Brasil. Biota Neotrop 10:53–60. https://doi.org/10.1590/S1676-06032010000300005

    Article  Google Scholar 

  • McCain KN (2013) Moving large river ecology from past theories to future actions: a review. Rev Fish Sci 21:39–48. https://doi.org/10.1080/10641262.2012.753867

    Article  Google Scholar 

  • Melo MS, Guimarães GB, Santana ÁC (2010) Fisiografia da bacia do rio Pitangui. In: Gealh AM, Melo MS, Moro RS (eds) Pitangui, rio de contrastes: seus lugares, seus peixes, sua gente. Editora UEPG, Ponta Grossa, pp 11–21

    Google Scholar 

  • Mello AS, Tavares AS, Trevisan R (2011) Podostemaceae in southern Brazil. Rodriguésia 62:867–855. https://doi.org/10.1590/S2175-78602011000400013

    Article  Google Scholar 

  • Mise FT, Fugi R, Pagotto JPA, Goulart E (2013) The coexistence of endemic species of Astyanax (Teleostei: Characidae) is propitiated by ecomorphological and trophic variations. Biota Neotrop 13:21–28. https://doi.org/10.1590/S1676-06032013000300001

    Article  Google Scholar 

  • Moraes MFPG, Cornélio D, Barbola IF (2010) Aspectos da biologia reprodutiva dos peixes do rio Pitangui. In: Gealh AM, Melo MS, Moro RS (eds) Pitangui, rio de contrastes: seus lugares, seus peixes, sua gente. Editora UEPG, Ponta Grossa, pp 127–139

    Google Scholar 

  • Moro RS, Carmo MRB (2007) A vegetação campestre nos Campos Gerais. In: Melo MS, Moro RS, Guimarães GB (eds) Patrimônio Natural dos Campos Gerais do Paraná. Editora UEPG, Ponta Grossa, pp 93–98

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: community ecology package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan. Accessed 06 December 2019

  • Parkhill KL, Gulliver JS (2002) Effect of inorganic sediment on whole-stream productivity. Hydrobiologia 472:5–17. https://doi.org/10.1023/A:101636322

    Article  Google Scholar 

  • Pauly D (1995) Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol Evol 10:430

    Article  CAS  Google Scholar 

  • Pazza R, Kavalco KF (2007) Chromosomal evolution in the neotropical characin Astyanax (Teleostei, Characidae). Nucleus 50:519–543

    Google Scholar 

  • Portella T, Lobón-Cerviá J, Manna LR, Bergallo HG, Mazzoni R (2017) Eco-morphological attributes and feeding habits in coexisting characins. J Fish Biol 90:129–146. https://doi.org/10.1111/jfb.13162

    Article  CAS  PubMed  Google Scholar 

  • Pusey BJ, Arthington AH (2003) Importance of the riparian zone to the conservation and management of freshwater fish: a review. Mar Freshw Res 54:1–16. https://doi.org/10.1071/MF02041

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed 20 July 2020

  • Reis RE, Albert JS, Di Dario F, Mincarone MM, Petry P, Rocha LA (2016) Fish biodiversity and conservation in South America. J Fish Biol 89:12–47. https://doi.org/10.1111/JFB.13016

    Article  CAS  PubMed  Google Scholar 

  • Rocha CH, Weirich Neto PH (2010) Padrões de uso das terras e implicações ambientais. In: Gealh AM, Melo MS, Moro RS (eds) Pitangui, rio de contrastes: seus lugares, seus peixes, sua gente. Editora UEPG, Ponta Grossa, pp 23–41

    Google Scholar 

  • Sá MFM (2007) Os solos dos Campos Gerais. In: Melo MS, Moro RS, Guimarães GB (eds) Patrimônio Natural dos Campos Gerais do Paraná. Editora UEPG, Ponta Grossa, pp 59–72

    Google Scholar 

  • Sabino J, Castro RMC (1990) Alimentação, período de atividade e distribuição espacial dos peixes de um riacho da Floresta Atlântica (Sudeste do Brasil). Rev Bras Biol 50:23–36

    Google Scholar 

  • Sequinel R, Arrúa MEP, Costa W (2011) Um levantamento das concentrações dos íons NO3−,PO43−, K+, Ca2+ and Mg2+ presentes nas águas do rio Verde e sua correlação com as atividades humanas existentes na área. Publicatio UEPG-Ciências Exatas e da Terra, Agrárias e Engenharias 17:29–37. https://doi.org/10.5212/Publ.Exatas.v.17i1.0003

    Article  Google Scholar 

  • Silveira EL, Ballester ELC, Costa KA, Scheffer EWO, Vaz-dos-Santos AM (2018) Fish community response to environmental variations in an impacted Neotropical basin. Ecol Freshw Fish 27:1126–1139. https://doi.org/10.1111/EFF.12420

    Article  Google Scholar 

  • Silveira EL, Semmar N, Cartes JE, Tuset VM, Lombarte A, Ballester ELC, Vaz-dos-Santos AM (2020) Methods for trophic ecology assessment in fishes: a critical review of stomach analyses. Rev Fish Sci Aquac 28:71–106. https://doi.org/10.1080/23308249.2019.1678013

    Article  Google Scholar 

  • Soga M, Gaston KJ (2018) Shifting baseline syndrome: causes, consequences, and implications. Front Ecol Environ 16:222–230. https://doi.org/10.1002/fee.1794

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (2012) Biometry: the principles and practice of statistics in biological research, 4th edn. W. H. Freeman, New York

    Google Scholar 

  • Souza UP, Ferreira FC, Braga FMS, Winemiller KO (2015) Feeding, body condition and reproductive investment of Astyanax intermedius (Characiformes, Characidae) in relation to rainfall and temperature in a Brazilian Atlantic Forest stream. Ecol Freshw Fish 24:123–132. https://doi.org/10.1111/eff.12131

    Article  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. https://doi.org/10.2307/1938672

    Article  Google Scholar 

  • Terán GE, Benitez MF, Mirande JM (2020) Opening the Trojan horse: phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc-Lond: zlaa019. https://doi.org/10.1093/zoolinnean/zlaa019

  • Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res App 22:123–147. https://doi.org/10.1002/rra.901

    Article  Google Scholar 

  • USEPA (2013) Aquatic life ambient water quality criteria for ammonia – freshwater. Environmental Protection Agency, Washington

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137. https://doi.org/10.1139/f80-017

    Article  Google Scholar 

  • Vazzoler AEAM, Agostinho AA, Hahn NS (1997) A planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. EDUEM, Maringá

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Fourth Edition. Springer, New York

    Book  Google Scholar 

  • Venables WN, Dichmont CM (2004) GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fish Res 70:319–337. https://doi.org/10.1016/j.fishres.2004.08.011

    Article  Google Scholar 

  • Vilella FS, Becker FG, Hartz SM (2002) Diet of Astyanax species (Teleostei, Characidae) in an Atlantic Forest river in southern Brazil. Braz Arch Biol Technol 45:223–232. https://doi.org/10.1590/S1516-89132002000200015

    Article  Google Scholar 

  • Windell JT, Bowen SH (1978) Methods for study of fish diets based on analysis of stomach contents. In: Bagenal T (ed) Methods for assessment of fish production in fresh waters. Blackwell Scientific Publications Ltd, Oxford, pp 219–226

    Google Scholar 

  • Winemiller KO, Jepsen DB (1998) Effects of seasonality and fish movement on tropical river food webs. J Fish Biol 53:267–296. https://doi.org/10.1111/j.1095-8649.1998.tb01032.x

    Article  Google Scholar 

  • Wolff LL, Abilhoa V, Rios FS, Donatti L (2009) Spatial, seasonal and ontogenetic variation in the diet of Astyanax aff. fasciatus (Ostariophysi: Characidae) in an Atlantic Forest river, southern Brazil. Neotrop Ichthyol 7:257–266. https://doi.org/10.1590/S1679-62252009000200018

    Article  Google Scholar 

  • Wootton RJ (1998) Ecology of teleost fishes. 2nd Edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zale AV, Sutton TM, Parrish DL (2012) Conducting fisheries investigations. In: Murphy BR, Willis DW (eds) Fisheries Techniques. 3nd ed. American Fish Society, Bethesda, pp 1–14

    Chapter  Google Scholar 

  • Zavala-Camin LA (1996) Introdução aos estudos sobre alimentação natural em peixes. EDUEM, Maringá

    Google Scholar 

  • Zeni JO, Casatti L (2014) The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726:259–270. https://doi.org/10.1007/s10750-013-1772-6

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science+Business Media, New York

    Book  Google Scholar 

Download references

Acknowledgements

Data come from the project “Structure of assemblages and population dynamics of the Neotropical ichthyofauna from a Paranaense microbasin, Southern Brazil”, granted by Araucária Foundation (State of Paraná Research Foundation) and Boticário Group Foundation for Nature Protection. The first author thanks Araucária Foundation for the scholarship. The second author thanks CAPES (Finance Code 001) for the Doctorate scholarship. The last author thanks CNPq for the research grant (no. 310451/2018-3). Sampling was licensed by the Chico Mendes Institute for Biodiversity conservation (Authorizations no. 40132-2 and no. 51797-1), and by Certificate of the Ethics Committee in the Use of Animals UFPR (Authorization no. 38/2015). Editors (mentioning Dr. David Noakes, deceased) and referees presented hard comments for the initial version of this manuscript, but all of them were constructive, allowing an enrichment of this paper and a personal and professional growth for all authors.

Funding

Araucária Foundation (State of Paraná Research Foundation) and Boticário Group Foundation for Nature Protection. CAPES (Finance Code 001). CNPq (research grant no. 310451/2018–3).

Author information

Authors and Affiliations

Authors

Contributions

André Martins Vaz-dos-Santos and Estevan Luiz da Silveira were responsible by the study conception, sampling design, data collection and analyses. The second author and Kathleen Angélica Rautenberg contributed preparing materials, lab and data analysis, and producing graphical plots. All authors contributed to the textual production process and approved the final manuscript version.

Corresponding author

Correspondence to André Martins Vaz-dos-Santos.

Ethics declarations

Ethics approval

Sampling was licensed by the Chico Mendes Institute for Biodiversity conservation (Authorizations no. 40132–2 and no. 51797–1), and by Certificate of the Ethics Committee in the Use of Animals UFPR (Authorization no. 38/2015).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/competing interests

The authors declare that they have no conflict of interests concerning its manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rautenberg, K.A., da Silveira, E.L. & Vaz-dos-Santos, A.M. Feeding trends of Psalidodon paranae in an impacted Neotropical basin: a multifactor and integrative approach. Environ Biol Fish 104, 89–105 (2021). https://doi.org/10.1007/s10641-021-01058-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-021-01058-y

Keywords

Navigation