Parentage assignment in Salmo trutta strains and their crossbreeds with known mating

Abstract

Brown trout, Salmo trutta is a widespread fish species throughout the Europe yet most of the natural populations of the species is in decline due to the anthropogenic pressures. Hatchery based stock enhancement is commonly used to restore depleted populations. Tracking pedigree information is useful for evaluating performance of stocked offspring and for examining introgression where stocking practices are being implemented. In this study, parentage assignment powers of 16 previously developed microsatellite markers have been evaluated in four brown trout strains and their reciprocal crossbreeds. The number of alleles per locus ranged between 3 (Str73INRA) -24 (T3-13). Observed (HO) and expected heterozygosity (HE) was between 0.188 and 0.854 and 0.175–0.903, respectively. According to the simulation analysis with prior known parental and filial information, of the 204 offspring tested, correct assignment rate of the eight most informative microsatellite marker to their parental pairs was 96.08% and that of 15 loci was 98.04%. Having more than eight markers boosted only 1.96% extra power of assignment. Meanwhile correct assignment rate of five loci was resulted only 85.29%. Our results demonstrate that microsatellite markers are reliable and effective tools for the parentage assignment in brown trout strains and their reciprocal crossbreeds. The findings obtained in the present study would also be useful for performance evaluation of stocked fish, detecting crossbreeds and examining introgression into natural populations.

This is a preview of subscription content, log in to check access.

Fig. 1

Data Availability

Microsatellite genotype data of parents and offspring, Offspring ID, Father ID for parentage assignment and Mother ID for parentage assignment: https://doi.org/10.5061/dryad.4j0zpc86z.

References

  1. Alemdağ M, Ozturk RC, Sahin SA, Altinok I (2019) Karyotypes of Danubian lineage brown trout and their hybrids. Caryologia 72:61–67. https://doi.org/10.13128/caryologia-160

    Article  Google Scholar 

  2. Altinok I, Ozturk RC, Capkin E, Kalayci G (2020) Experimental crossbreeding reveals variation in growth among brown trout (Salmo trutta) strains and their reciprocal crossbreeds. Aquaculture 521:734983

    CAS  Article  Google Scholar 

  3. Anderson EC, Garza JC (2006) The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics 172:2567–2582. https://doi.org/10.1534/genetics.105.048074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Andrews KR, Adams JR, Cassirer EF et al (2018) A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from RADseq data. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.12910

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aparicio E, García-Berthou E, Araguas RM et al (2005) Body pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from Mediterranean streams. J Fish Biol 67:931–949. https://doi.org/10.1111/j.1095-8649.2005.00794.x

    Article  Google Scholar 

  6. Aykanat T, Johnston SE, Cotter D et al (2014) Molecular pedigree reconstruction and estimation of evolutionary parameters in a wild Atlantic salmon river system with incomplete sampling: A power analysis. BMC Evol Biol 14:1471–2148. https://doi.org/10.1186/1471-2148-14-68

    Article  Google Scholar 

  7. Baer J, Blasel K, Diekmann M (2007) Benefits of repeated stocking with adult, hatchery-reared brown trout, Salmo trutta, to recreational fisheries? Fish Manag Ecol 14:51–59. https://doi.org/10.1111/j.1365-2400.2006.00523.x

    Article  Google Scholar 

  8. Baumsteiger J, Hand DM, Olson DE et al (2008) Use of parentage analysis to determine reproductive success of hatchery-origin spring chinook salmon outplanted into Shitike Creek, Oregon. North Am J Fish Manag 28:1472–1485. https://doi.org/10.1577/M07-195.1

    Article  Google Scholar 

  9. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188. https://doi.org/10.1214/aos/1013699998

    Article  Google Scholar 

  10. Berrebi P, Poteaux C, Fissier M, Cattaneo-Berrebi G (2000) Stocking impact and allozyme diversity in brown trout from Mediterranean southern France. J Fish Biol 56:949–960. https://doi.org/10.1006/jfbi.1999.1221

    CAS  Article  Google Scholar 

  11. Bingham DM, Gerrity PC, Painter S (2018) Genetic tagging is an effective way to monitor survival of released hatchery saugers: Conservation efforts in the Wind River, Wyoming. Environ Pract 20:92–103. https://doi.org/10.1080/14660466.2018.1531667

    Article  Google Scholar 

  12. Caballero A, Rodríguez-Ramilo ST, Ávila V, Fernández J (2010) Management of genetic diversity of subdivided populations in conservation programmes. Conserv Genet 11:409–419. https://doi.org/10.1007/s10592-009-0020-0

    Article  Google Scholar 

  13. Di Pierro E, Bertolino S, Martinoli A et al (2010) Estimating offspring production using capture-mark-recapture and genetic methods in red squirrels. Ecol Res 25:395–402. https://doi.org/10.1007/s11284-009-0667-5

    Article  Google Scholar 

  14. Duchesne P, Bernatchez L (2000) Individual-based genotype analysis in studies of parentage and population assignment: how many loci, how many alleles? Can J Fish Aquat Sci 57:1–12

    Google Scholar 

  15. Estoup A, Presa P, Krieg F, Vaiman D, Guyomard R (1993) CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71:488–496

    CAS  Article  Google Scholar 

  16. Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, Guyomard R (1998a) Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol Ecol 7:339–353

    CAS  Article  Google Scholar 

  17. Estoup A, Gharbi K, SanCristobal M et al (1998b) Parentage assignment using microsatellites in turbot (Scophthalmus maximus) and rainbow trout (Oncorhynchus mykiss) hatchery populations. Can J Fish Aquat Sci 55:715–725

    Article  Google Scholar 

  18. Ford MJ, Hanson MB, Hempelmann JA et al (2011) Inferred paternity and male reproductive success in a killer whale (orcinus orca) population. J Hered 102:537–553. https://doi.org/10.1093/jhered/esr067

    Article  PubMed  Google Scholar 

  19. Ford MJ, Murdoch A, Hughes M (2015) Using parentage analysis to estimate rates of straying and homing in Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol 24:1109–1121. https://doi.org/10.1111/mec.13091

    Article  PubMed  Google Scholar 

  20. Hauser L, Baird M, Hilborn R et al (2011) An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population. Mol Ecol Resour. https://doi.org/10.1111/j.1755-0998.2010.02961.x

    Article  PubMed  Google Scholar 

  21. Kalayci G, Ozturk RC, Capkin E, Altinok I (2018) Genetic and molecular evidence that brown trout Salmo trutta belonging to the Danubian lineage are a single biological species. J Fish Biol 93:792–804. https://doi.org/10.1111/jfb.13777

    CAS  Article  PubMed  Google Scholar 

  22. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  23. Kim SG, Morishima K, Satoh N et al (2007) Parentage assignment in hatchery population of brown sole Pleuronectes herzensteini by microsatellite DNA markers. Fish Sci 73:1087–1093. https://doi.org/10.1111/j.1444-2906.2007.01440.x

    CAS  Article  Google Scholar 

  24. Larios-López JE, Tierno de Figueroa JM, Alonso-González C, Nebot Sanz B (2015) Distribution of brown trout (Salmo trutta Linnaeus, 1758) (Teleostei: Salmonidae) in its southwesternmost European limit: possible causes. Ital J Zool 82:404–415. https://doi.org/10.1080/11250003.2015.1018351

    Article  Google Scholar 

  25. Letcher BH, King TL (2011) Parentage and grandparentage assignment with known and unknown matings: application to Connecticut River Atlantic salmon restoration. Can J Fish Aquat Sci 58:1812–1821. https://doi.org/10.1139/f01-125

    Article  Google Scholar 

  26. Li CD, Rossnagel BG, Scoles GJ (2000) The development of oat microsatellite markers and their use identifying relationships among Avena species and oat cultivars. Theor Appl Genet 101:1259–1268. https://doi.org/10.1007/s001220051605

    CAS  Article  Google Scholar 

  27. Liu Y, Yang R, Liu Y, Si F (2017) Use of microsatellite DNA profiling to identify Japanese flounder, paralichthys olivaceus of hatchery origin. J World Aquac Soc 48:353–359. https://doi.org/10.1111/jwas.12330

    CAS  Article  Google Scholar 

  28. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. https://doi.org/10.1046/j.1365-294x.1998.00374.x

    CAS  Article  PubMed  Google Scholar 

  29. Matson SE, Camara MD, Eichert W, Banks MA (2008) P-LOCI: A computer program for choosing the most efficient set of loci for parentage assignment. Mol Ecol Resour 8:765–768. https://doi.org/10.1111/j.1755-0998.2008.02128.x

    Article  PubMed  Google Scholar 

  30. Moore SA, Bronte CR (2004) Delineation of sympatric morphotypes of Lake Trout in Lake Superior. Trans Am Fish Soc 130:1233–1240. https://doi.org/10.1577/1548-8659(2001)130<1233:dosmol>2.0.co;2

    Article  Google Scholar 

  31. Muhlfeld CC, Kalinowski ST, McMahon TE et al (2009) Hybridization rapidly reduces fitness of a native trout in the wild. Biol Lett 5:328–331. https://doi.org/10.1098/rsbl.2009.0033

    Article  PubMed  PubMed Central  Google Scholar 

  32. Norris AT, Bradley DG, Cunningham EP (2000) Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar) using microsatellite markers. Aquaculture 182:73–83. https://doi.org/10.1016/S0044-8486(99)00247-1

    Article  Google Scholar 

  33. O’Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquat Sci 53:2292–2298

    Google Scholar 

  34. O’Reilly PT, Herbinger C, Wright JM (1998) Analysis of parentage determination in Atlantic salmon (Salmo salar) using microsatellites. Anim Genet 29:363–370. https://doi.org/10.1046/j.1365-2052.1998.295359.x

    Article  Google Scholar 

  35. Pakkasmaa S, Piironen J (2001) Morphological differentiation among local trout (Salmo trutta) populations. Biol J Linn Soc 72:231–239. https://doi.org/10.1006/bijl.2000.0488

    Article  Google Scholar 

  36. Pemberton JM (2008) Wild pedigrees: The way forward. Proc R Soc B Biol Sci 275:613–621. https://doi.org/10.1098/rspb.2007.1531

    CAS  Article  Google Scholar 

  37. Poteaux C, Bonhomme F, Berrebi P (1999) Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.). Heredity 82:645–653

    Article  Google Scholar 

  38. Presa P, Guyomards R (1996) Conservation of microsatellites in three species of salmonids. J Fish Biol 49:1326–1329

    Google Scholar 

  39. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered 86:248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573

    Article  Google Scholar 

  40. Rodzen JA, Famula TR, May B (2004) Estimation of parentage and relatedness in the polyploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated microsatellite loci. Aquaculture 232:165–182. https://doi.org/10.1016/S0044-8486(03)00450-2

    Article  Google Scholar 

  41. Sanchez JA, Clabby C, Ramos D, Blanco G, Flavin F, Vazquez E, Powell R (1996) Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon). Heredity 77:423–432

    CAS  Article  Google Scholar 

  42. Sanz N, García-Marín JL, Pla C (2002) Managing fish populations under mosaic relationships. The case of brown trout (Salmo trutta) in peripheral Mediterranean populations. Conserv Genet 3:385–400. https://doi.org/10.1023/A:1020527420654

    Article  Google Scholar 

  43. Sanz N, Araguas RM, Fernandez R (2009) Efficiency of markers and methods for detecting hybrids.pdf. Conserv Genet 10:225–236

    CAS  Article  Google Scholar 

  44. Savary R, Dufresnes C, Champigneulle A et al (2017) Stocking activities for the Arctic charr in Lake Geneva: Genetic effects in space and time. Ecol Evol 7:5201–5211. https://doi.org/10.1002/ece3.3073

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sellars MJ, Dierens L, Mcwilliam S et al (2014) Comparison of microsatellite and SNP DNA markers for pedigree assignment in Black Tiger shrimp, Penaeus monodon. Aquac Res 45:417–426. https://doi.org/10.1111/j.1365-2109.2012.03243.x

    CAS  Article  Google Scholar 

  46. Serbezov D, Bernatchez L, Olsen EM, VØllestad LA (2010) Mating patterns and determinants of individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire stream living population. Mol Ecol 19:3193–3205. https://doi.org/10.1111/j.1365-294X.2010.04744.x

    Article  PubMed  Google Scholar 

  47. Slettan A, Olsaker I, Lie Ø (1995) Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim Genet 26:281–282

    CAS  Article  Google Scholar 

  48. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    CAS  Article  Google Scholar 

  49. Vandeputte M, Haffray P (2014) Parentage assignment with genomic markers: A major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Front Genet 5:432. https://doi.org/10.3389/fgene.2014.00432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Westley PAH, Stanley R, Fleming IA (2013) Experimental tests for heritable morphological color plasticity in non-native brown trout (Salmo trutta) populations. PLoS One 8:e80401. https://doi.org/10.1371/journal.pone.0080401

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Wollebaek J, Røed KH, Brabrand Å, Heggenes J (2012) Interbreeding of genetically distinct native brown trout (Salmo trutta) populations designates offspring fitness. Aquaculture 356:158–168. https://doi.org/10.1016/j.aquaculture.2012.05.020

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by Scientific and Technological Research Council of Turkey (TUBITAK: 214O595).

Author information

Affiliations

Authors

Contributions

IA directed all experiments and revised this manuscript. GK and RCO produced brown trout cross-types and collected samples. GK performed DNA extraction and PCR. GK and RCO generated microsatellite data. RCO analyzed and interpreted microsatellite data. RCO led the writing of the article and all authors contributed to the writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ilhan Altinok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalayci, G., Ozturk, R.C. & Altinok, I. Parentage assignment in Salmo trutta strains and their crossbreeds with known mating. Environ Biol Fish 103, 1391–1399 (2020). https://doi.org/10.1007/s10641-020-01030-2

Download citation

Keywords

  • Parentage assignment
  • Crossbreeding
  • Microsatellite
  • Brown trout