Phylogeography of the Mayan cichlid Mayaheros urophthalmus (Teleostei: Cichlidae) in the Yucatan peninsula based on mitochondrial markers CYTB and COI

Abstract

The Yucatan Peninsula (YP) suffered several marine transgressions and regressions during the Quaternary, thus molding the distribution of its present biota, especially its freshwater fish fauna. The Mayan cichlid (Mayaheros urophthalmus Günther) is a euryhaline fish native to the Atlantic slope of Mexico and northern Central America, including the YP; it is one of the most widespread freshwater species in the region. Herein we discuss a phylogeographic scenario by which the Mayan cichlid may have reached its current distribution in the YP. A Bayesian analysis and minimum spanning network were inferred from two partial mitochondrial genes, Cytochrome b (CYTB) and Cytochrome c Oxidase I (COI). The two fragments showed genetic differentiation among populations (Fst = 0.31, p value <0.001). Tajima’s D and Fu ´s F revealed a tendency to the expansion of some populations. A consistent ordination of north vs south populations was observed. A spatial analysis of molecular variance (SAMOVA) was performed to recognize putative barriers among populations of M. urophthalmus. A secondary molecular calibration located the window time in which the dispersal event may have occurred during the Pleistocene, around 1 Mya. We determined that a Quaternary dispersal around the old coastlines from the south explains the current distribution of the Mayan cichlid.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aris-Brosou S, Yang Z (2002) Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol 51:703–714

    Article  Google Scholar 

  2. Arita HT (1997) The non-volant mammal fauna of Mexico: species richness in a megadiverse country. Biodivers Conserv 6:787–795

    Article  Google Scholar 

  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  4. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  Article  Google Scholar 

  5. Barrientos-Medina RC (2005) Estado taxonómico de la mojarra rayada “Cichlasoma” urophthalmus Günther, 1862 (Teleostei: Cichlidae). M.Sc. Thesis, El Colegio de la Frontera Sur, Chetumal, Mexico. El Colegio de la Frontera Sur

  6. Barrientos-Villalobos J, Schmitter-Soto JJ, Espinosa de los Monteros A (2018) Several subspecies or phenotypic plasticity? A geometric morphometric and molecular analysis of variability of the Mayan cichlid Mayaheros urophthalmus in the Yucatan. Copeia 106:268–278. https://doi.org/10.1643/ci-17-657

    Article  Google Scholar 

  7. Bautista F, Palacio-Aponte G, Quintana P, Zinck JA (2011) Spatial distribution and development of soils in tropical karst areas from the peninsula of Yucatan, Mexico. Geomorphology 135:308–321. https://doi.org/10.1016/j.geomorph.2011.02.014

    Article  Google Scholar 

  8. Brown JH, Lomolino MV (1988) Biogeography. Sinauer, Sunderland

    Google Scholar 

  9. Chakrabarty P (2006) Systematics and historical biogeography of greater Antillean Cichlidae. Mol Phylogenet Evol 39:619–627. https://doi.org/10.1016/j.ympev.2006.01.014

    Article  PubMed  Google Scholar 

  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    CAS  Article  Google Scholar 

  11. Concheiro Pérez GA, Říčan O, Ortí G et al (2007) Phylogeny and biogeography of 91 species of heroine cichlids (Teleostei: Cichlidae) based on sequences of the cytochrome b gene. Mol Phylogenet Evol 43:91–110. https://doi.org/10.1016/j.ympev.2006.08.012

    CAS  Article  Google Scholar 

  12. Condamine FL, Clapham ME, Kergoat GJ (2016) Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci Rep 6. https://doi.org/10.1038/srep19208

  13. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    CAS  Article  Google Scholar 

  14. Delmonte B, Robert Petit J, Basile-Doelsch I et al (2007) Late Quaternary interglacials in East Antarctica from ice-core dust records. Dev Quat Sci 7:53–73. https://doi.org/10.1016/S1571-0866(07)80031-5

    Article  Google Scholar 

  15. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. https://doi.org/10.1093/molbev/mss075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Espadas Manrique C, Durán R, Argáez J (2003) Phytogeographic analysis of taxa endemic to the Yucatán peninsula using geographic information systems, the domain heuristic method and parsimony analysis of endemicity. Divers Distrib 9:313–330. https://doi.org/10.1046/j.1472-4642.2003.00034.x

    Article  Google Scholar 

  17. Farias IP, Ortí G, Sampaio I et al (2001) The cytochrome b gene as a phylogenetic marker: the limits of resolution for analyzing relationships among cichlid fishes. J Mol Evol 53:89–103. https://doi.org/10.1007/s002390010197

    CAS  Article  PubMed  Google Scholar 

  18. Gondwe BRN, Lerer S, Stisen S et al (2010) Hydrogeology of the South-Eastern Yucatan peninsula: new insights from water level measurements, geochemistry, geophysics and remote sensing. J Hydrol 389:1–17. https://doi.org/10.1016/j.jhydrol.2010.04.044

    Article  Google Scholar 

  19. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. [London]: Information Retrieval Ltd., c1979-c2000., pp 95–98

  21. Haq BU, Hardenbol J, Vail PR (1987) The new chronostratigraphic basis of Cenozoic and Mesozoic sea level cycles. In: Timing and depositional history of eustatic sequences: constraints on seismic stratigraphy. Cushman Foundation for Forminiferal Research, Special Publications, pp 7–13

  22. Harrison E, Trexler JC, Collins TM et al (2014) Genetic evidence for multiple sources of the non-native fish Cichlasoma urophthalmus (Günther; Mayan cichlids) in southern Florida. PLoS One 9:e104173. https://doi.org/10.1371/journal.pone.0104173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Head MJ, Gibbard PL (2015) Formal subdivision of the quaternary system/period: past, present, and future. Quat Int 383:4–35. https://doi.org/10.1016/j.quaint.2015.06.039

    Article  Google Scholar 

  24. Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58:367–380

    Article  Google Scholar 

  25. Hubbs CL (1936) Fishes of the Yucatan peninsula. Carnegie Inst Wash Publ 17:157–287

    Google Scholar 

  26. Hulsey CD, López-Fernández H (2011) Nuclear Central America. In: Albert JS, dos Reis RE (eds) Historical biogeography of Neotropical freshwater fishes. University of California Press, Oakland, pp 279–292

    Google Scholar 

  27. Humphries JM, Miller RR (1981) A remarkable species flock of pupfishes, genus Cyprinodon, from Yucatan, Mexico. Copeia 1981:52–64

    Article  Google Scholar 

  28. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144. https://doi.org/10.1007/BF02515385

    CAS  Article  PubMed  Google Scholar 

  29. Lovejoy NR, de Araújo MLG (2000) Molecular systematics, biogeography and population structure of Neotropical freshwater needlefishes of the genus Potamorrhaphis. Mol Ecol 9:259–268. https://doi.org/10.1046/j.1365-294X.2000.00845.x

    CAS  Article  PubMed  Google Scholar 

  30. Lugo-Hubp J, Aceves-Quesada F, Espinasa-Pereña R (1992) Rasgos geomorfológicos mayores de la península de Yucatán. Rev del Inst Geol 10:143–150

    Google Scholar 

  31. Martin AP, Bermingham E (1998) Systematics and evolution of lower central American cichlids inferred from analysis of cytochrome b gene sequences. Mol Phylogenet Evol 9:192–203

    CAS  Article  Google Scholar 

  32. Martínez-Palacios CA, Ross LG (1988) The feeding ecology of the central American cichlid Cichlasoma urophthalmus (Gunther). J Fish Biol 33:665–670

    Article  Google Scholar 

  33. Matamoros WA, McMahan CD, Chakrabarty P, et al (2014) Derivation of the freshwater fish fauna of Central America revisited: Myers’ hypothesis in the twenty-first century. Cladistics 1–12

  34. Miller RR, Minckley WL, Norris SM (2009) Peces dulceacuícolas de México. CONABIO, SIMAC, ECOSUR, DFC, Mexico City

  35. Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261. https://doi.org/10.1111/j.1538-4632.1973.tb01011.x

    Article  Google Scholar 

  36. Montaggioni LF, Braithwaite CJR (2009) Quaternary coral reef systems: history, development processes and controlling factors. Elsevier, Amsterdam

    Google Scholar 

  37. Morrone JJ (2005) Hacia una síntesis biogeográfica de México. An del Inst Biol Univ Nac Autónoma México, Ser Botánica 76:207–252

    Google Scholar 

  38. Nico LG, Beamish WH, Musikasinthorn P (2007) Discovery of the invasive Mayan cichlid fish “Cichlasoma” urophthalmus (Günther, 1862) in Thailand, with comments on other introductions and potential impacts. Aquat Invasions 2:197–214. https://doi.org/10.3391/ai.2007.2.3.7

    Article  Google Scholar 

  39. Ogg JG, Ogg GM, Gradstein FM (2016) The concise geologic time scale. Elsevier, Amsterdam

    Google Scholar 

  40. Pfenninger M, Posada D, Shaw K (2002) Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution (N Y) 56:1776–1788

    Google Scholar 

  41. Rambaut A (2016) FigTree vers. 1.4.3

  42. Rambaut A, Suchard MA, Xie DD (2014) Tracer vers. 1.6

  43. Razo-Mendívil U, Vázquez-Domínguez E, Pérez-Ponce de León G (2013) Discordant genetic diversity and geographic patterns between Crassicutis cichlasomae (Digenea: Apocreadiidae) and its cichlid host, “Cichlasoma” urophthalmus (Osteichthyes: Cichlidae), in middle America. J Parasitol 99:978–988. https://doi.org/10.1645/13-225.1

    CAS  Article  PubMed  Google Scholar 

  44. Říčan O, Piálek L, Zardoya R et al (2013) Biogeography of the Mesoamerican Cichlidae (Teleostei: Heroini): colonization through the GAARlandia land bridge and early diversification. J Biogeogr 40:579–593. https://doi.org/10.1111/jbi.12023

    Article  Google Scholar 

  45. Rohling EJ, Foster GL, Grant KM et al (2014) Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508:477–482. https://doi.org/10.1038/nature13230

    CAS  Article  PubMed  Google Scholar 

  46. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180

    CAS  Article  PubMed  Google Scholar 

  47. Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  Google Scholar 

  48. Schmitter-Soto JJ (2002) Ictiogeografía de Yucatán, México. In: Lozano-Villano M de L (ed) Libro Jubilar en Honor al Doctor Salvador Contreras Balderas. Universidad Autónoma de Nuevo León, Monterrey, pp 103–116

  49. Schmitter-Soto JJ (1999) Distribution of continental fishes in northern Quintana Roo, Mexico. Southwest Nat 44:166–172

    Google Scholar 

  50. Schmitter-Soto JJ, Comín FA, Escobar-Briones EG et al (2002) Hydrogeochemical and biological characteristics of cenotes in the Yucatan peninsula (SE Mexico). Hydrobiologia 467:215–228. https://doi.org/10.1023/A:1014923217206

    CAS  Article  Google Scholar 

  51. Schmitter-Soto JJ, Gamboa-Pérez HC (1996) Composición y distribución de peces continentales en el sur de Quintana Roo, Península de Yucatán, México. Rev Biol Trop 44:199–212

    Google Scholar 

  52. Simoni M, Bakker E, Eurlings MCM et al (1999) Laboratory guidelines for molecular diagnosis of Y-chromosomal microdeletions. Int J Androl 22:292–299. https://doi.org/10.1046/j.1365-2605.1999.00193.x

    CAS  Article  PubMed  Google Scholar 

  53. Simpson GG (1964) Species density of north American recent mammals. Syst Zool 13:57–73. https://doi.org/10.2307/2411825

    Article  Google Scholar 

  54. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stenico M, Nigro L, Barbujani G (1998) Mitochondrial lineages in ladin-speaking communities of the eastern Alps. Proc R Soc Lond B Biol Sci 265:555–561

    CAS  Article  Google Scholar 

  56. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III Cladogram estimation Genetics 132:619–633

    CAS  PubMed  Google Scholar 

  57. Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657. https://doi.org/10.1093/oxfordjournals.molbev.a025892

    CAS  Article  PubMed  Google Scholar 

  58. Polzin T, Daneshmand SV, (2003) On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters 31(1):1220

    Article  Google Scholar 

  59. Udvardy MDF (1975) A classification of the biogeographical provinces of the world. IUCN, Morges

    Google Scholar 

  60. Urrutia-Fucugauchi J, Chávez-Aguirre JM, Pérez-Cruz L, de la Rosa JL (2008) Impact ejecta and carbonate sequence in the eastern sector of the Chicxulub crater. Compt Rendus Geosci 340:801–810. https://doi.org/10.1016/j.crte.2008.09.001

    Article  Google Scholar 

  61. Vázquez-Domínguez E, Arita HT (2010) The Yucatan peninsula: biogeographical history 65 million years in the making. Ecography (Cop) 33:212–219. https://doi.org/10.1111/j.1600-0587.2009.06293.x

    Article  Google Scholar 

  62. Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356. https://doi.org/10.1111/j.1095-8649.2008.02080.x

    CAS  Article  PubMed  Google Scholar 

  63. Wilkens H (1982) Regressive evolution and phylogenetic age: the history of colonization of freshwaters of Yucatan by fish and crustacea. Texas Meml Museum Bull 28:237–243

    Google Scholar 

  64. Wilken H, Strecker U (2017) Evolution in the dark. Darwin´s loss without selection. Springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-662-54512-6

    Google Scholar 

  65. Woodburne MO (2010) The great American biotic interchange: dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17:245–264. https://doi.org/10.1007/s10914-010-9144-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Eddie Guillén and Rubén Méndez helped in the field. JBV thanks the Mexican Consejo Nacional de Ciencia y Tecnología for a postdoctoral grant (290847).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Barrientos-Villalobos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Statement on the welfare of animals

This work did not include experiments, but fish were collected and preserved at the collection in ECOSUR. This was done under the proper permits from Mexican environmental authorities (No. PPF/DGOPA-053/15), and all applicable international, national, and institutional guidelines for the use of animals in research were followed. Such ethical standards include a humane euthanization of the fish (using ice) and the capture of just enough specimens to conduct the study.

The work did not include studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Collection sites Catalogue numbers N
1. Cenote Azul ECO-CH 7820 7
2. L. Manati ECO-CH 7645 7
3. L. Cobá ECO-CH 7821 5
4. Popolvuh ECO-CH 7819 9
5. Celestún ECO-CH 7534 9
6. Cenote San Juan Del Río ECO-CH- 7531 5
7. Progreso río Canotaje ECO-CH 7532 6
8. Laguna de Términos ECO-CH 7547 5
9. P. Chenkan ECO-CH (uncat.) 6
10. Río Palizada ECO-CH 7549 5
11. Sabana Payo Obispo ECO-CH 7535 5
12. L. Silvituc ECO-CH 7546 1
13. Emiliano Zapata ECO-CH 7548 2
14. Río Hondo, Belize ECO-CH 7570, 7585(1) 3
15. Sabancuy Pucteito ECO-CH 7573 6
  1. Acronym: ECO-CH, Colección Ictiológica de El Colegio de la Frontera Sur, Unidad Chetumal. The N corresponds to the size of the sample

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrientos-Villalobos, J., Schmitter-Soto, J.J. Phylogeography of the Mayan cichlid Mayaheros urophthalmus (Teleostei: Cichlidae) in the Yucatan peninsula based on mitochondrial markers CYTB and COI. Environ Biol Fish 102, 1461–1472 (2019). https://doi.org/10.1007/s10641-019-00920-4

Download citation

Keywords

  • Colonization of freshwaters
  • Dispersal
  • Genetic diversity
  • Pleistocene