Advertisement

Environmental Biology of Fishes

, Volume 102, Issue 12, pp 1461–1472 | Cite as

Phylogeography of the Mayan cichlid Mayaheros urophthalmus (Teleostei: Cichlidae) in the Yucatan peninsula based on mitochondrial markers CYTB and COI

  • J. Barrientos-VillalobosEmail author
  • J. J. Schmitter-Soto
Article

Abstract

The Yucatan Peninsula (YP) suffered several marine transgressions and regressions during the Quaternary, thus molding the distribution of its present biota, especially its freshwater fish fauna. The Mayan cichlid (Mayaheros urophthalmus Günther) is a euryhaline fish native to the Atlantic slope of Mexico and northern Central America, including the YP; it is one of the most widespread freshwater species in the region. Herein we discuss a phylogeographic scenario by which the Mayan cichlid may have reached its current distribution in the YP. A Bayesian analysis and minimum spanning network were inferred from two partial mitochondrial genes, Cytochrome b (CYTB) and Cytochrome c Oxidase I (COI). The two fragments showed genetic differentiation among populations (Fst = 0.31, p value <0.001). Tajima’s D and Fu ´s F revealed a tendency to the expansion of some populations. A consistent ordination of north vs south populations was observed. A spatial analysis of molecular variance (SAMOVA) was performed to recognize putative barriers among populations of M. urophthalmus. A secondary molecular calibration located the window time in which the dispersal event may have occurred during the Pleistocene, around 1 Mya. We determined that a Quaternary dispersal around the old coastlines from the south explains the current distribution of the Mayan cichlid.

Keywords

Colonization of freshwaters Dispersal Genetic diversity Pleistocene 

Notes

Acknowledgments

Eddie Guillén and Rubén Méndez helped in the field. JBV thanks the Mexican Consejo Nacional de Ciencia y Tecnología for a postdoctoral grant (290847).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Statement on the welfare of animals

This work did not include experiments, but fish were collected and preserved at the collection in ECOSUR. This was done under the proper permits from Mexican environmental authorities (No. PPF/DGOPA-053/15), and all applicable international, national, and institutional guidelines for the use of animals in research were followed. Such ethical standards include a humane euthanization of the fish (using ice) and the capture of just enough specimens to conduct the study.

The work did not include studies with human participants performed by any of the authors.

References

  1. Aris-Brosou S, Yang Z (2002) Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol 51:703–714CrossRefGoogle Scholar
  2. Arita HT (1997) The non-volant mammal fauna of Mexico: species richness in a megadiverse country. Biodivers Conserv 6:787–795CrossRefGoogle Scholar
  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  4. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefGoogle Scholar
  5. Barrientos-Medina RC (2005) Estado taxonómico de la mojarra rayada “Cichlasoma” urophthalmus Günther, 1862 (Teleostei: Cichlidae). M.Sc. Thesis, El Colegio de la Frontera Sur, Chetumal, Mexico. El Colegio de la Frontera SurGoogle Scholar
  6. Barrientos-Villalobos J, Schmitter-Soto JJ, Espinosa de los Monteros A (2018) Several subspecies or phenotypic plasticity? A geometric morphometric and molecular analysis of variability of the Mayan cichlid Mayaheros urophthalmus in the Yucatan. Copeia 106:268–278.  https://doi.org/10.1643/ci-17-657 CrossRefGoogle Scholar
  7. Bautista F, Palacio-Aponte G, Quintana P, Zinck JA (2011) Spatial distribution and development of soils in tropical karst areas from the peninsula of Yucatan, Mexico. Geomorphology 135:308–321.  https://doi.org/10.1016/j.geomorph.2011.02.014 CrossRefGoogle Scholar
  8. Brown JH, Lomolino MV (1988) Biogeography. Sinauer, SunderlandGoogle Scholar
  9. Chakrabarty P (2006) Systematics and historical biogeography of greater Antillean Cichlidae. Mol Phylogenet Evol 39:619–627.  https://doi.org/10.1016/j.ympev.2006.01.014 CrossRefPubMedGoogle Scholar
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  11. Concheiro Pérez GA, Říčan O, Ortí G et al (2007) Phylogeny and biogeography of 91 species of heroine cichlids (Teleostei: Cichlidae) based on sequences of the cytochrome b gene. Mol Phylogenet Evol 43:91–110.  https://doi.org/10.1016/j.ympev.2006.08.012 CrossRefGoogle Scholar
  12. Condamine FL, Clapham ME, Kergoat GJ (2016) Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci Rep 6.  https://doi.org/10.1038/srep19208
  13. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefGoogle Scholar
  14. Delmonte B, Robert Petit J, Basile-Doelsch I et al (2007) Late Quaternary interglacials in East Antarctica from ice-core dust records. Dev Quat Sci 7:53–73.  https://doi.org/10.1016/S1571-0866(07)80031-5 CrossRefGoogle Scholar
  15. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973.  https://doi.org/10.1093/molbev/mss075 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Espadas Manrique C, Durán R, Argáez J (2003) Phytogeographic analysis of taxa endemic to the Yucatán peninsula using geographic information systems, the domain heuristic method and parsimony analysis of endemicity. Divers Distrib 9:313–330.  https://doi.org/10.1046/j.1472-4642.2003.00034.x CrossRefGoogle Scholar
  17. Farias IP, Ortí G, Sampaio I et al (2001) The cytochrome b gene as a phylogenetic marker: the limits of resolution for analyzing relationships among cichlid fishes. J Mol Evol 53:89–103.  https://doi.org/10.1007/s002390010197 CrossRefPubMedGoogle Scholar
  18. Gondwe BRN, Lerer S, Stisen S et al (2010) Hydrogeology of the South-Eastern Yucatan peninsula: new insights from water level measurements, geochemistry, geophysics and remote sensing. J Hydrol 389:1–17.  https://doi.org/10.1016/j.jhydrol.2010.04.044 CrossRefGoogle Scholar
  19. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704.  https://doi.org/10.1080/10635150390235520 CrossRefPubMedGoogle Scholar
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. [London]: Information Retrieval Ltd., c1979-c2000., pp 95–98Google Scholar
  21. Haq BU, Hardenbol J, Vail PR (1987) The new chronostratigraphic basis of Cenozoic and Mesozoic sea level cycles. In: Timing and depositional history of eustatic sequences: constraints on seismic stratigraphy. Cushman Foundation for Forminiferal Research, Special Publications, pp 7–13Google Scholar
  22. Harrison E, Trexler JC, Collins TM et al (2014) Genetic evidence for multiple sources of the non-native fish Cichlasoma urophthalmus (Günther; Mayan cichlids) in southern Florida. PLoS One 9:e104173.  https://doi.org/10.1371/journal.pone.0104173 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Head MJ, Gibbard PL (2015) Formal subdivision of the quaternary system/period: past, present, and future. Quat Int 383:4–35.  https://doi.org/10.1016/j.quaint.2015.06.039 CrossRefGoogle Scholar
  24. Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58:367–380CrossRefGoogle Scholar
  25. Hubbs CL (1936) Fishes of the Yucatan peninsula. Carnegie Inst Wash Publ 17:157–287Google Scholar
  26. Hulsey CD, López-Fernández H (2011) Nuclear Central America. In: Albert JS, dos Reis RE (eds) Historical biogeography of Neotropical freshwater fishes. University of California Press, Oakland, pp 279–292CrossRefGoogle Scholar
  27. Humphries JM, Miller RR (1981) A remarkable species flock of pupfishes, genus Cyprinodon, from Yucatan, Mexico. Copeia 1981:52–64CrossRefGoogle Scholar
  28. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144.  https://doi.org/10.1007/BF02515385 CrossRefPubMedGoogle Scholar
  29. Lovejoy NR, de Araújo MLG (2000) Molecular systematics, biogeography and population structure of Neotropical freshwater needlefishes of the genus Potamorrhaphis. Mol Ecol 9:259–268.  https://doi.org/10.1046/j.1365-294X.2000.00845.x CrossRefPubMedGoogle Scholar
  30. Lugo-Hubp J, Aceves-Quesada F, Espinasa-Pereña R (1992) Rasgos geomorfológicos mayores de la península de Yucatán. Rev del Inst Geol 10:143–150Google Scholar
  31. Martin AP, Bermingham E (1998) Systematics and evolution of lower central American cichlids inferred from analysis of cytochrome b gene sequences. Mol Phylogenet Evol 9:192–203CrossRefGoogle Scholar
  32. Martínez-Palacios CA, Ross LG (1988) The feeding ecology of the central American cichlid Cichlasoma urophthalmus (Gunther). J Fish Biol 33:665–670CrossRefGoogle Scholar
  33. Matamoros WA, McMahan CD, Chakrabarty P, et al (2014) Derivation of the freshwater fish fauna of Central America revisited: Myers’ hypothesis in the twenty-first century. Cladistics 1–12Google Scholar
  34. Miller RR, Minckley WL, Norris SM (2009) Peces dulceacuícolas de México. CONABIO, SIMAC, ECOSUR, DFC, Mexico CityGoogle Scholar
  35. Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261.  https://doi.org/10.1111/j.1538-4632.1973.tb01011.x CrossRefGoogle Scholar
  36. Montaggioni LF, Braithwaite CJR (2009) Quaternary coral reef systems: history, development processes and controlling factors. Elsevier, AmsterdamGoogle Scholar
  37. Morrone JJ (2005) Hacia una síntesis biogeográfica de México. An del Inst Biol Univ Nac Autónoma México, Ser Botánica 76:207–252Google Scholar
  38. Nico LG, Beamish WH, Musikasinthorn P (2007) Discovery of the invasive Mayan cichlid fish “Cichlasoma” urophthalmus (Günther, 1862) in Thailand, with comments on other introductions and potential impacts. Aquat Invasions 2:197–214.  https://doi.org/10.3391/ai.2007.2.3.7 CrossRefGoogle Scholar
  39. Ogg JG, Ogg GM, Gradstein FM (2016) The concise geologic time scale. Elsevier, AmsterdamGoogle Scholar
  40. Pfenninger M, Posada D, Shaw K (2002) Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution (N Y) 56:1776–1788Google Scholar
  41. Rambaut A (2016) FigTree vers. 1.4.3Google Scholar
  42. Rambaut A, Suchard MA, Xie DD (2014) Tracer vers. 1.6Google Scholar
  43. Razo-Mendívil U, Vázquez-Domínguez E, Pérez-Ponce de León G (2013) Discordant genetic diversity and geographic patterns between Crassicutis cichlasomae (Digenea: Apocreadiidae) and its cichlid host, “Cichlasoma” urophthalmus (Osteichthyes: Cichlidae), in middle America. J Parasitol 99:978–988.  https://doi.org/10.1645/13-225.1 CrossRefPubMedGoogle Scholar
  44. Říčan O, Piálek L, Zardoya R et al (2013) Biogeography of the Mesoamerican Cichlidae (Teleostei: Heroini): colonization through the GAARlandia land bridge and early diversification. J Biogeogr 40:579–593.  https://doi.org/10.1111/jbi.12023 CrossRefGoogle Scholar
  45. Rohling EJ, Foster GL, Grant KM et al (2014) Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508:477–482.  https://doi.org/10.1038/nature13230 CrossRefPubMedGoogle Scholar
  46. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  47. Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  48. Schmitter-Soto JJ (2002) Ictiogeografía de Yucatán, México. In: Lozano-Villano M de L (ed) Libro Jubilar en Honor al Doctor Salvador Contreras Balderas. Universidad Autónoma de Nuevo León, Monterrey, pp 103–116Google Scholar
  49. Schmitter-Soto JJ (1999) Distribution of continental fishes in northern Quintana Roo, Mexico. Southwest Nat 44:166–172Google Scholar
  50. Schmitter-Soto JJ, Comín FA, Escobar-Briones EG et al (2002) Hydrogeochemical and biological characteristics of cenotes in the Yucatan peninsula (SE Mexico). Hydrobiologia 467:215–228.  https://doi.org/10.1023/A:1014923217206 CrossRefGoogle Scholar
  51. Schmitter-Soto JJ, Gamboa-Pérez HC (1996) Composición y distribución de peces continentales en el sur de Quintana Roo, Península de Yucatán, México. Rev Biol Trop 44:199–212Google Scholar
  52. Simoni M, Bakker E, Eurlings MCM et al (1999) Laboratory guidelines for molecular diagnosis of Y-chromosomal microdeletions. Int J Androl 22:292–299.  https://doi.org/10.1046/j.1365-2605.1999.00193.x CrossRefPubMedGoogle Scholar
  53. Simpson GG (1964) Species density of north American recent mammals. Syst Zool 13:57–73.  https://doi.org/10.2307/2411825 CrossRefGoogle Scholar
  54. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562PubMedPubMedCentralGoogle Scholar
  55. Stenico M, Nigro L, Barbujani G (1998) Mitochondrial lineages in ladin-speaking communities of the eastern Alps. Proc R Soc Lond B Biol Sci 265:555–561CrossRefGoogle Scholar
  56. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III Cladogram estimation Genetics 132:619–633PubMedGoogle Scholar
  57. Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657.  https://doi.org/10.1093/oxfordjournals.molbev.a025892 CrossRefPubMedGoogle Scholar
  58. Polzin T, Daneshmand SV, (2003) On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters 31(1):1220CrossRefGoogle Scholar
  59. Udvardy MDF (1975) A classification of the biogeographical provinces of the world. IUCN, MorgesGoogle Scholar
  60. Urrutia-Fucugauchi J, Chávez-Aguirre JM, Pérez-Cruz L, de la Rosa JL (2008) Impact ejecta and carbonate sequence in the eastern sector of the Chicxulub crater. Compt Rendus Geosci 340:801–810.  https://doi.org/10.1016/j.crte.2008.09.001 CrossRefGoogle Scholar
  61. Vázquez-Domínguez E, Arita HT (2010) The Yucatan peninsula: biogeographical history 65 million years in the making. Ecography (Cop) 33:212–219.  https://doi.org/10.1111/j.1600-0587.2009.06293.x CrossRefGoogle Scholar
  62. Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356.  https://doi.org/10.1111/j.1095-8649.2008.02080.x CrossRefPubMedGoogle Scholar
  63. Wilkens H (1982) Regressive evolution and phylogenetic age: the history of colonization of freshwaters of Yucatan by fish and crustacea. Texas Meml Museum Bull 28:237–243Google Scholar
  64. Wilken H, Strecker U (2017) Evolution in the dark. Darwin´s loss without selection. Springer, Berlin, Heidelberg  https://doi.org/10.1007/978-3-662-54512-6 CrossRefGoogle Scholar
  65. Woodburne MO (2010) The great American biotic interchange: dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17:245–264.  https://doi.org/10.1007/s10914-010-9144-8 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.El Colegio de la Frontera SurChetumalMexico

Personalised recommendations