Advertisement

Environmental Biology of Fishes

, Volume 101, Issue 9, pp 1319–1328 | Cite as

Using otolith morphometry for the identification of three sympatric and morphologically similar species of Astyanax from the Atlantic Rain Forest (Argentina)

  • Esteban Avigliano
  • María Eugenia Rolón
  • Juan José Rosso
  • Ezequiel Mabragaña
  • Alejandra Vanina Volpedo
Article

Abstract

In several genera, the otolith shape is species-specific and the use of this structure provides a useful tool aiding in the species identification. In many studies regarding Neotropical fish fauna, species of the genus Astyanax are commonly identified at the genus level, mainly due to the phenotypic plasticity of the morphological characters traditionally used for species determination. In consequence, additional tools intended to better elucidate the taxonomic boundaries between species of Astyanax are certainly needed. In the last decade, the shape of otoliths has allowed to discriminate among closely related species. In this work, Fourier descriptors and shape indices of lapillus otolith were evaluated for the discrimination among three sympatric species of genus Astyanax inhabiting streams of the Atlantic Rain Forest (Argentina). Aspect ratio, roundness and ellipticity of otoliths were significantly different between the species (p < 0.05) while, no significant differences were found for circularity, rectangularity and form factor (p > 0.05). PERMANOVA analysis reveal significant differences between species using Fourier descriptors (F = 96.7, 0.0001 < p < 0.02) and the reclassification rates of quadratic discriminant analysis were high, averaging 86.3% (82.7 - 88.6%). Multivariate analyses of shape indices were not effective to discriminate between species. Instead, high classification percentages suggest that the otolith outline is a potential tool for the identification of sympatric morphologically similar species of Astyanax. Our results could contribute to future taxonomic and phylogenetic studies and may be an interesting input for both paleontological and trophic studies in sympatric species.

Keywords

Astyanax Argentina Fourier analysis Morphology Neotropical fish 

Notes

Acknowledgments

We thank to Universidad de Buenos Aires (UBACYT 20020150100052BA, ANPCYT (PICT 2010-132), CONICET (PIP112-20120100543CO), Centro de Investigación Antonia Ramos (CIAR) and The United Nations Development Programme (UNDP) for financial support. We are also indebted to Mr. F. Castia from the Biological Station of Esmeralda and Rangers from Yabotí Park E. Benitez, L. Rojas, R. Villalba, H. Lory, G. Ibarra, E. Taron, F. Ramirez, V. Soley for the valuable logistic support in the field. EA, JJR and EM recognises the support provided by the Fundación para la Transferencia e Innovación Tecnológica (INNOVA-T). The authors declare that the present study was approved by CONICET and Ministry of Ecology and Renewable Resources of the province of Misiones, Argentina. Therefore, there are no ethical issues or conflicts. We also wish to acknowledge the anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

References

  1. Almirón AE, Azpelicueta MM, Casciotta JR, López Cazorla A (1997) Ichthyogeographic boundary between the Brazilian and Austral Subregions in South America. Biogeographica 73:23–30Google Scholar
  2. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253.  https://doi.org/10.1111/j.1541-0420.2005.00440.x CrossRefPubMedGoogle Scholar
  3. Avigliano E, Schenone NF (2015) Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic Rainforest mountain rivers (South America). Microchem J 122:149–158.  https://doi.org/10.1016/j.microc.2015.05.004 CrossRefGoogle Scholar
  4. Avigliano E, Schenone NF (2016) Water quality in the Atlantic Rainforest Mountain Rivers (South America): quality indices assessment, nutrients distribution and consumption effect. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-016-6646-9
  5. Avigliano E, Martinez CFR, Volpedo AV (2014) Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fish Res 149:55–60.  https://doi.org/10.1016/j.fishres.2013.09.013 CrossRefGoogle Scholar
  6. Avigliano E, Jawad LA, Volpedo AV (2015) Assessment of the morphometry of saccular otoliths as a tool to identify triplefin species (Tripterygiidae). J Mar Biol Assoc United Kingdom:1–14.  https://doi.org/10.1017/S0025315415001101
  7. Avigliano E, Rolón E, Mabragaña E, Rosso JJ (2017a) Otolitos de peces de la Selva Paranaense. In: Volpedo AV, Thompson G, Avigliano E (eds) Atlas de Otolitos de Peces de Argentina. CAPES, Buenos Aires, Argentina, pp 38–76Google Scholar
  8. Avigliano E, Domanico A, Sánchez S, Volpedo AV (2017b) Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fish Res.  https://doi.org/10.1016/j.fishres.2016.07.026
  9. Bani A, Poursaeid S, Tuset VM (2013) Comparative morphology of the sagittal otolith in three species of south Caspian gobies. J Fish Biol 82:1321–1332.  https://doi.org/10.1111/jfb.12073 CrossRefPubMedGoogle Scholar
  10. Barker, D, Allan GL, Rowland SJ, Pickles JM (2009) A Guide to acceptable procedures and practices for aquaculture and fisheries research, 3rd edn. Nelson Bay, AustraliaGoogle Scholar
  11. Bertolini RM, Senhorini JA, do Nascimento NF et al (2018) First feeding of diploid and triploid yellowtail tetra Astyanax altiparanae: An initial stage for application in laboratory studies. Aquac Res 49:68–74.  https://doi.org/10.1111/are.13433 CrossRefGoogle Scholar
  12. Boudinar AS, Chaoui L, Quignard JP et al (2016) Otolith shape analysis and mitochondrial DNA markers distinguish three sand smelt species in the Atherina boyeri species complex in western Mediterranean. Estuar Coast Shelf Sci 182:202–210.  https://doi.org/10.1016/j.ecss.2016.09.019 CrossRefGoogle Scholar
  13. Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:355–359.  https://doi.org/10.1111/j.1654-1103.2005.tb02374.x CrossRefGoogle Scholar
  14. Buckland A, Baker R, Loneragan N, Sheaves M (2017) Standardising fish stomach content analysis: The importance of prey condition. Fish Res 196:126–140.  https://doi.org/10.1016/j.fishres.2017.08.003 CrossRefGoogle Scholar
  15. Callicó Fortunato R, Benedito Durà V, Volpedo A (2014) The morphology of saccular otoliths as a tool to identify different mugilid species from the Northeastern Atlantic and Mediterranean Sea. Estuar Coast Shelf Sci 146:95–101.  https://doi.org/10.1016/j.ecss.2014.05.013 CrossRefGoogle Scholar
  16. Campana SE (2013) Otolith elemental as a natural marker of fish stocks. In: Cadrin SX, Kerr LA, Mariani S (eds) Stock Identification Methods: Applications in Fishery Science: Second Edition. pp 227–245Google Scholar
  17. Campana SE, Thorrold SR, Jones CM et al (1997) Comparison of accuracy, precision, and sensitivity in elemental assays of fish otoliths using the electron microprobe, proton-induced X-ray emission, and laser ablation inductively coupled plasma mass spectrometry. Can J Fish Aquat Sci 54:2068–2079.  https://doi.org/10.1139/cjfas-54-9-2068 CrossRefGoogle Scholar
  18. Casciotta JR, Almirón AE, Azpelicueta MM (2003) A new species of Astyanax from río Uruguay basin, Argentina (Characiformes : Characidae). Ichthyol Explor Freshwaters 14:329–334Google Scholar
  19. Crampton JS (1995) Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28:179–186.  https://doi.org/10.1111/j.1502-3931.1995.tb01611.x CrossRefGoogle Scholar
  20. De La Ducommun MP, Beltzer AH, Ronchi Virgolini AL, Quiroga MA (2010) Feeding ecology of Cocoi Heron (Ardea cocoi) in the flood valley of the Paraná River. Avian Biol Res 3:115–121.  https://doi.org/10.3184/175815510X12823123204658 CrossRefGoogle Scholar
  21. Azpelicueta MM, Almiron AE, Casciotta JR (2002) Astyanax paris: A new species from the rio Uruguay Basin of Argentina (Characiformes, Characidae). Copeia 2002:1052–1056Google Scholar
  22. De Lucena CAS, Castro JB, Bertaco VA (2013) Three new species of Astyanax from drainages of southern Brazil (Characiformes: Characidae). Neotrop Ichthyol 11:537–552.  https://doi.org/10.1590/S1679-62252013000300007 CrossRefGoogle Scholar
  23. Di Rienzo JA, Casanoves F, Balzarini MG, et al (2011) InfoStat versión 2011. Grup InfoStat, FCA, Univ Nac Córdoba, Argentina URL http://www.infostat.com.ar 8:195–199
  24. Eigenmann CH (1921) The American Characidae. Part 3. Mem Museum Comp Zool 43:209–310Google Scholar
  25. Eschmeyer WN, Fricke R (2017) Catalog of Fishes: Genera, Species, References. In: Cat. Fishes Electron. version. https://www.calacademy.org/scientists/projects/catalog-of-fishes
  26. Ferguson GJ, Ward TM, Gillanders BM (2011) Otolith shape and elemental composition: Complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish Res 110:75–83.  https://doi.org/10.1016/j.fishres.2011.03.014 CrossRefGoogle Scholar
  27. Ferson S, Rohlf FJ, Koehn RK (1985) Measuring Shape Variation of Two-Dimensional Outlines. Syst Zool 34:59–68.  https://doi.org/10.2307/2413345 CrossRefGoogle Scholar
  28. Flores S, Hirt L, Araya P (2015) Estructura y dinámica de la comunidad íctica del arroyo Yabotí, Reserva de Biosfera Yabotí, Misiones, Argentina. Rev Mex Biodivers 86:386–395.  https://doi.org/10.1016/j.rmb.2015.04.004
  29. French A, Macedo M, Poulsen J et al (2002) Multivariate Analysis of Variance (MANOVA). San Fr State Univ:1–8.  https://doi.org/10.1016/0169-7439(90)80094-M
  30. Gierl C, Reichenbacher B, Gaudant J et al (2013) An extraordinary gobioid fish fossil from Southern France. PLoS One 8:e64117.  https://doi.org/10.1371/journal.pone.0064117 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Giménez J, Marçalo A, Ramírez F et al (2017) Diet of bottlenose dolphins (Tursiops truncatus) from the Gulf of Cadiz: Insights from stomach content and stable isotope analyses. PLoS One:1–14.  https://doi.org/10.1371/journal.pone.0184673
  32. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815.  https://doi.org/10.1890/02-3114 CrossRefGoogle Scholar
  33. Hammer Ø (2011) PAST - PAleontological STatistics Reference manual. Nat Hist:1–205.  https://doi.org/10.1016/j.bcp.2008.05.025
  34. Helder J, De Andrade HK (1997) Food and feeding habits of the neotropical river otter Lontra longicaudis (Carnivora, Mustelidae). Mammalia 61:193–203Google Scholar
  35. Jaramillo AM, Tombari AD, Dura VB, Rodrigo ME (2014) Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain). Thalassas 30:57–66Google Scholar
  36. Javonillo R, Malabarba LR, Weitzman SH, Burns JR (2010) Relationships among major lineages of characid fishes (Teleostei: Ostariophysi: Characiformes), based on molecular sequence data. Mol Phylogenet Evol 54:498–511.  https://doi.org/10.1016/j.ympev.2009.08.026 CrossRefPubMedGoogle Scholar
  37. Lleonart J, Salat J, Torres GJ (2000) Removing allometric effects of body size in morphological analysis. J Theor Biol 205:85–93.  https://doi.org/10.1006/jtbi.2000.2043 CrossRefPubMedGoogle Scholar
  38. Lombarte A, Lleonart J (1993) Otolith size changes related with body growth, habitat depth and temperature. Environ Biol Fish 37:297–306.  https://doi.org/10.1007/BF00004637 CrossRefGoogle Scholar
  39. Lombarte A, Palmer M, Matallanas J et al (2010) Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environ Biol Fish 89:607–618.  https://doi.org/10.1007/s10641-010-9673-2 CrossRefGoogle Scholar
  40. Mirande JM (2010) Phylogeny of the family characidae (teleostei: Characiformes): From characters to taxonomy. Neotrop Ichthyol 8:385–568.  https://doi.org/10.1111/j.1096-0031.2009.00262.x CrossRefGoogle Scholar
  41. Nelson JS, Grande TC, Wilson M V. (2016) Fishes of the world. Wiley Online LibraryGoogle Scholar
  42. Ornelas-García CP, Domínguez-Domínguez O, Doadrio I (2008) Evolutionary history of the fish genus Astyanax baird & Girard (1854) (Actinopterygii, Characidae) in mesoamerica reveals multiple morphological homoplasies. BMC Evol Biol.  https://doi.org/10.1186/1471-2148-8-340
  43. Pereira LS, Agostinho AA, Delariva RL (2016) Effects of river damming in Neotropical piscivorous and omnivorous fish: feeding, body condition and abundances. Neotrop Ichthyol.  https://doi.org/10.1590/1982-0224-20150044
  44. Prang G (2007) An industry analysis of the freshwater ornamental fishery with particular reference to the supply of Brazilian freshwater ornamentals to the UK market. Uakari 3:7–51.  https://doi.org/10.1126/science.aab1495 CrossRefGoogle Scholar
  45. Reichenbacher B, Reichard M (2014) Otoliths of five extant species of the annual killifish Nothobranchius from the east African Savannah. PLoS One 9:e112459.  https://doi.org/10.1371/journal.pone.0112459 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Reichenbacher B, Sienknecht U, Küchenhoff H, Fenske N (2007) Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, †Prolebias). J Morphol 268:898–915.  https://doi.org/10.1002/jmor.10561 CrossRefPubMedGoogle Scholar
  47. Rodrigues LR, Fontoura NF, Da Motta Marques D (2014) Food-web structure in a subtropical coastal lake: How phylogenetic constraints may affect species linkages. Mar Freshw Res 65:453–465.  https://doi.org/10.1071/MF12259 CrossRefGoogle Scholar
  48. Rossini BC, Oliveira CAM, Gonçalves De Melo FA et al (2016) Highlighting Astyanax species diversity through DNA barcoding. PLoS One.  https://doi.org/10.1371/journal.pone.0167203
  49. Rosso JJ, Mabragaña E, Avigliano E et al (2013) Short spatial and temporal scale patterns of fish assemblages in a subtropical rainforest mountain stream. Stud Neotrop Fauna Environ 48:199–209.  https://doi.org/10.1080/01650521.2014.890850 CrossRefGoogle Scholar
  50. Schulz-Mirbach T, Reichenbacher B (2008) Fossil Aphanius (Teleostei, Cyprinodontiformes) from southwestern Anatolia (Turkey): A contribution to the evolutionary history of a hotspot of freshwater biodiversity. Geodiversitas 30:577–592Google Scholar
  51. Schwarzhans W, Scofield RP, Tennyson AJD et al (2012) Fish remains, mostly otoliths, from the Non-marine early miocene of Otago, New Zealand. Acta Palaeontol Pol 57:319–350.  https://doi.org/10.4202/app.2010.0127 CrossRefGoogle Scholar
  52. Small GE, Pringle CM, Pyron M, Duff JH (2011) Role of the fish Astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient neotropical streams. Ecology 92:386–397.  https://doi.org/10.1890/10-0081.1 CrossRefPubMedGoogle Scholar
  53. Stacks DW (1989) Statistical package for the social sciences/pc v3.0. Commun Educ 38:387–393CrossRefGoogle Scholar
  54. Tuset VM, Lombarte A, González JA et al (2003) Comparative morphology of the sagittal otolith in Serranus spp. J Fish Biol 63:1491–1504.  https://doi.org/10.1111/j.1095-8649.2003.00262.x CrossRefGoogle Scholar
  55. Tuset VM, Parisi-Baradad V, Lombarte A (2013) Application of otolith mass and shape for discriminating scabbardfishes Aphanopus spp. in the north-eastern Atlantic Ocean. J Fish Biol 82:1746–1752.  https://doi.org/10.1111/jfb.12101 CrossRefPubMedGoogle Scholar
  56. Vasconcelos J, Vieira AR, Sequeira V et al (2017) Identifying populations of the blue jack mackerel (Trachurus picturatus) in the Northeast Atlantic by using geometric morphometrics and otolith shape analysis. Fish Bull 116:81–92.  https://doi.org/10.7755/FB.116.1.9 CrossRefGoogle Scholar
  57. Vignon M, Morat F (2010) Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar Ecol Prog Ser 411:231–241.  https://doi.org/10.3354/meps08651 CrossRefGoogle Scholar
  58. Volpedo A, Diana Echeverría D (2003) Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fish Res 60:551–560.  https://doi.org/10.1016/S0165-7836(02)00170-4 CrossRefGoogle Scholar
  59. Volpedo AV, Fuchs DV (2010) Ecomorphological patterns of the lapilli of Paranoplatense Siluriforms (South America). Fish Res 102:160–165.  https://doi.org/10.1016/j.fishres.2009.11.007 CrossRefGoogle Scholar
  60. Zhuang L, Ye Z, Zhang C (2014) Application of otolith shape analysis to species separation in Sebastes spp. from the Bohai Sea and the Yellow Sea, northwest Pacific. Environ Biol Fish 98:547–558.  https://doi.org/10.1007/s10641-014-0286-z CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018
corrected publication June/2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Producción Animal (INPA), Facultad de Ciencias VeterinariasUniversidad de Buenos Aires (UBA)-CONICETBuenos AiresArgentina
  2. 2.Grupo de Biotaxonomía Morfológica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras (IIMyC)-CONICETUniversidad Nacional de Mar del Plata (UNMdP)Buenos AiresArgentina

Personalised recommendations