Environmental Biology of Fishes

, Volume 101, Issue 7, pp 1149–1160 | Cite as

Age and growth of diadromous Galaxias maculatus (Jenyns, 1842) in southernmost South America (54° S) including contribution of age classes to reproduction

  • Javier H. Rojo
  • Daniel E. Figueroa
  • Claudia C. Boy


The population of Galaxias maculatus studied here, Arroyo Negro (54° S), is located at the southern extreme of the species distribution. This is the first work on growth and other life history traits of a Fueguian diadromous population based on otoliths study. This species is part of the native fish fauna of Patagonia. Furthermore, studies on the growth and reproduction of G. maculatus in South America mostly refer to freshwater populations of Andean-Patagonian lakes and rivers (about 41° S). Size cohorts were studied; age and growth parameters were estimated, the latter using the VBGM. Four size cohorts were established, and 3+ was determined as maximum age class. No differences were found in growth curves between males and females. The 1+ age class was by far not only the most numerous in the population but also the most represented in the reproductive population. The relation between mean TL and latitude was positive (r = 0.62) for South American populations; however, further studies are needed to determine whether it is this population’s life strategy, the local adaptation of a peripheral population or countergradient growth. The results are interpreted in the context of the information available for other populations, and provide important information about the plasticity in life history traits of this species.


Maximum size Otoliths Patagonia Puyen Size-at-age Tierra del Fuego 



We thank Administración de Parques Nacionales, Sofía Siffo, Daniel Aureliano, Marcelo Gutiérrez, Sonia Rimbau and José Luis Pereira for their collaboration and María Isabel Ledesma for assistance with the translation of the manuscript. The comments of two anonymous reviewers improved the manuscript. This research was supported by: Administración de Parques Nacionales (Project N°1038, N° 032CPA), Ministerio de Ciencia, Tecnología e Innovación Productiva (PFIP 2009, N°2720/09), CONICET (P.I.P. 440) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014, N°1804).

Compliance with ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arnott SA, Chiba S, Conover DO (2006) Evolution of intrinsic growth rate: metabolic costs drive trade-offs between growth and swimming performance in Menidia menidia. Evolution 60(6):1269–1278. CrossRefPubMedGoogle Scholar
  2. Barbee NC, Hale R, Morrongiello J, Hicks A, Semmens D, Downes BJ, Swearer SE (2011) Large-scale variation in life history traits of the widespread diadromous fish, Galaxias maculatus, reflects geographic differences in local environmental conditions. Mar Freshw Res 62:790–800. CrossRefGoogle Scholar
  3. Barriga JP, Battini MA, Macchi PJ, Milano D, Cussac VE (2002) Spatial and temporal distribution of landlocked Galaxias maculatus and Galaxias platei (Pisces: Galaxiidae) in a lake in the South American Andes. N Z J Mar Freshwat Res 36:345–359. CrossRefGoogle Scholar
  4. Barriga JP, Battini MA, Cussac VE (2007) Annual dynamics variation of a landlocked Galaxias maculatus (Jenyns 1842) population in a Northern Patagonian river: occurrence of juvenile upstream migration. J Appl Ichthyol 23(2):128–135. CrossRefGoogle Scholar
  5. Barriga JP, Battini MÁ, García-Asorey M, Carrea C, Macchi PJ, Cussac VE (2012) Intraspecific variation in diet, growth, and morphology of landlocked Galaxias maculatus during its larval period: the role of food availability and predation risk. Hydrobiologia 679:27–41. CrossRefGoogle Scholar
  6. Baty F, Ritz C, Charles S, Brutsche M, Flandrois JP, Delignette-Muller ML (2015) A toolbox for nonlinear regression in R: the package nlstools. J Stat Softw 66(5):1–21. CrossRefGoogle Scholar
  7. Beatty GE, McEvoy PM, Sweeney O, Provan J (2008) Range–edge effects promote clonal growth in peripheral populations of the one–sided wintergreen Orthilia secunda. Divers Distrib 14:546–555. CrossRefGoogle Scholar
  8. Berkeley SA, Hixon MA, Larson RJ, Love MS (2004) Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29:23–32.[23:FSVPOA]2.0.CO;2Google Scholar
  9. Bhattacharya CG (1967) A simple method of resolution of a distribution into Gaussian components. Biometrics 23(1):115–135CrossRefPubMedGoogle Scholar
  10. Boy CC, Morriconi E, Calvo J (2007) Reproduction in puyen, Galaxias maculatus (Pisces: Galaxiidae), in the southernmost extreme of distribution. J Appl Ichthyol 23:547–554. CrossRefGoogle Scholar
  11. Boy CC, Pérez AF, Fernández DA, Calvo J, Morriconi ER (2008) Energy allocation in relation to spawning and overwintering of a diadromous Puyen (Galaxias maculatus) population in the southernmost limit of the species distribution. Polar Biol 32:9–14. CrossRefGoogle Scholar
  12. Boy CC, Pérez AF, Lattuca ME, Calvo J, Morriconi E (2009) Reproductive biology of Galaxias maculatus (Jenyns 1842) in Río Ovando estuary, a high–latitude environment in southernmost Patagonia. J Appl Ichthyol 25:661–668. CrossRefGoogle Scholar
  13. Bunnell FL, Campbell RW, Squires KA (2004) Conservation priorities for peripheral species: the example of British Columbia. Can J For Res 34:2240–2247CrossRefGoogle Scholar
  14. Burridge CP, McDowall RM, Craw D, Wilson MVH, Waters JM (2012) Marine dispersal as a pre-requisite for Gondwanan vicariance among elements of the galaxiid fish fauna. J Biogeogr 39:306–321CrossRefGoogle Scholar
  15. Campos H (1970) Galaxias maculatus (Jenyns) en Chile, con especial referencia a su reproducción. Bol Mus His Nat Chile 31:5–20Google Scholar
  16. Campos H (1973) Migration of Galaxias maculatus (Jenyns) (Galaxiidae, Pisces) in Valdivia Esturay, Chile. Hydrobiologia 43(3):301–312Google Scholar
  17. Campos H (1974) Population studies of Galaxias maculatus (Jenyns) (Osteichthys: Galaxiidae) in Chile with reference to the number of vertebrae. Stud Neotrop Fauna Environ 9:55–76CrossRefGoogle Scholar
  18. Cervellini PM, Battini MA, Cussac VE (1993) Ontogenetic shifts in the diet of Galaxias maculatus (Galaxiidae) and Odontesthes microlepidotus (Atherinidae). Environ Biol Fish 36:283–290CrossRefGoogle Scholar
  19. Chapman A, Morgan DL, Beatty SJ, Gill HS (2006) Variation in life history of land-locked lacustrine and riverine populations of Galaxias maculatus (Jenyns 1842) in Western Australia. Environ Biol Fish 77:21–37CrossRefGoogle Scholar
  20. Chen Y, Jackson DA, Harvey HH (1992) A comparison of von Bertalanffy and polynomial functions in modelling fish growth data. Can J Fish Aquat Sci 49:1228–1235CrossRefGoogle Scholar
  21. Cifuentes R, González J, Montoya G, Jara A, Ortíz N, Piedra P, Habit E (2012) Relación longitud-peso y factor de condición de los peces nativos del río San Pedro (cuenca del río Valdivia, Chile). Gayana 75:101–110. CrossRefGoogle Scholar
  22. Closs GP, Hicks AS, Jellyman PG (2013) Life histories of closely related amphidromous and non-migratory fish species: a trade-off between egg size and fecundity. Freshwat Biol 58:1162–1177. CrossRefGoogle Scholar
  23. Conover DO (1990) The relation between capacity for growth and length of growing season: evidence for and implications of countergradient variation. Trans Am Fish Soc 119(3):416–430CrossRefGoogle Scholar
  24. Conover DO, Present TMC (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia 83:316–324CrossRefPubMedGoogle Scholar
  25. Copp GH (1990) Effect of regulation on 0+ fish recruitment in the Great Ouse, a lowland river. Regul Rivers: Res Manage 5:251–263CrossRefGoogle Scholar
  26. Cousseau MB, Ehrlich MD, Fabré NN, Figueroa DE (2010) Ecología de los peces de aguas continentales. In: Cousseau MB (ed) Ictiología Aspectos fundamentales La vida de los peces sudamericanos. EUDEM, Mar del Plata, pp 505–537Google Scholar
  27. Cussac VE, Cervellini PM, Battini MA (1992) Intralacustrine movements of Galaxias maculatus (Galaxiidae) and Odontesthes microlepidotus (Atherinidae) during their early life history. Environ Biol Fish 35:141–148CrossRefGoogle Scholar
  28. Dioses T (2013) Edad y crecimiento del jurel Trachurus murphyi en el Perú. Rev Peru Biol 20:45–52Google Scholar
  29. Ferriz RA (1987) Biología del Puyen "Galaxias maculatus" (Jenyns) (Teleostomi, Galaxiidae) en un embalse norpatagonico. Ciclo de vida, ciclo gonadal y fecundidad. Rev Mus Argent Cienc Nat 6(5):29–38Google Scholar
  30. Ferriz RA, Gómez SE (2015) Polimorfismo en poblaciones diadrómicas y lacustrinas de Galaxias maculatus, Argentina, Sudamérica. Bioikos 29(2)Google Scholar
  31. Flebbe PA, Roghair LD, Bruggink JL (2006) Spatial modeling to project southern Appalachian trout distribution in a warmer climate. Trans Am Fish Soc 135:1371–1382CrossRefGoogle Scholar
  32. Gayanilo FCJ, Sparre P, Pauly D (2005) FAO-ICLARM Stock Assessment Tools II (FiSAT II). Revised version. User's guide., vol 8. FAO Computerized Information Series (Fisheries), RomeGoogle Scholar
  33. González-Wevar C, Salinas P, Hüne M, Segovia N, Vargas-Chacoff L, Oda E, Poulin E (2015a) Contrasting genetic structure and diversity of Galaxias maculatus (Jenyns, 1848) along the chilean coast: stock identification for fishery management. J Hered 106:439–447CrossRefPubMedGoogle Scholar
  34. González-Wevar CA, Salinas P, Hüne M, Segovia NI, Vargas-Chacoff L, Astorga M, Cañete JI, Poulin E (2015b) Phylogeography in Galaxias maculatus (Jenyns, 1848) along two biogeographical provinces in the chilean coast. PLoS One 10(7):e0131289CrossRefPubMedPubMedCentralGoogle Scholar
  35. Górski K, Habit EM, Pingram MA, Manosalva AJ (2015) Variation of the use of marine resources by Galaxias maculatus in large Chilean rivers. Hydrobiologia 814:61–73. CrossRefGoogle Scholar
  36. Gosztonyi AE (1970) Los peces de la expedición científica a la Isla de los Estados, Argentina (Noviembre–Diciembre de 1967). Physis 30(80):173–180Google Scholar
  37. Hislop JRG (1988) The influence of maternal length and age on the size and weight of the eggs and the relative fecundity of the haddock, Melanogrammus aeglefinus, in British waters. J Fish Biol 32:923–930. CrossRefGoogle Scholar
  38. Jenyns L (1842) Part IV, Fish. In: Darwin C (ed) The zoology of the voyage of HMS Beagle, under the command of Captain Fitzroy, RN during the years 1832 to 1836. Smith, Elder & Co., London, United KingdomGoogle Scholar
  39. Jordan DS (1891) Relations of temperature to vertebrae among fishes. Proceedings United States National Museum 14:107–120CrossRefGoogle Scholar
  40. Laurenson LJB, French RP, Jones P, Ierodiaconou D, Gray S, Versace VL, Rattray A, Brown S, Monk J (2012) Aspects of the biology of Galaxias maculatus. J Fish Biol 81:1085–1100CrossRefPubMedGoogle Scholar
  41. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9(4):753–760CrossRefGoogle Scholar
  42. Marteinsdottir G, Steinarsson A (1998) Maternal influence on the size and viability of cod (Gadus morhua L.) eggs and larvae. J Fish Biol 52:1241–1258. CrossRefGoogle Scholar
  43. McDowall RM (1968) Galaxias maculatus (Jenyns), the New Zealand Whitebait. Fisheries Research Division, Marine Dept., Wellington, New ZealandGoogle Scholar
  44. McDowall RM (1971) The galaxiid fishes of South America. Zool J Linnean Soc 50:33–73CrossRefGoogle Scholar
  45. McDowall RM (2003) Variation in vertebral number in galaxiid fishes (Teleostei: Galaxiidae): a legacy of life history, latitude and length. Environ Biol Fish 66:361–381. CrossRefGoogle Scholar
  46. McDowall RM (2008) Jordan’s and other ecogeographical rules, and the vertebral number in fishes. J Biogeogr 35:501–508CrossRefGoogle Scholar
  47. McDowall RM, Mitchell CP, Brothers EB (1994) Age at migration from the sea of juvenile Galaxias in New Zealand (Pisces: Galaxiidae). Bull Mar Sci 54:385–402Google Scholar
  48. Munro J, Pauly D (1983) A simple method for comparing the growth of fishes and invertebrates. Aust Fish 1:5–6Google Scholar
  49. Nielsen JL (1999) The evolutionary history of steelhead (Oncorhynchus mykiss) along the US Pacific coast: developing a conservation strategy using genetic diversity. ICES J Mar Sci 56:449–458CrossRefGoogle Scholar
  50. Nielsen JL, Scott JM, Aycrigg JL (2001) Endangered species and peripheral populations: cause for conservation. Endanger species. Update 18(5):193–220Google Scholar
  51. Ogle DH (2016) FSA: fisheries stock analysis. R package version 0.8.5Google Scholar
  52. Pauly D (1979) Theory and management of tropical multispecies stocks: a review, with emphasis on the Southeast Asian demersal fisheries. Studies and Reviews No 1. Manila, Filipinas: ICLARMGoogle Scholar
  53. Penaluna BE, Arismendi I, Soto D (2009) Evidence of interactive segregation between introduced trout and native fishes in northern Patagonian rivers, Chile. Trans Am Fish Soc 138:839–845. CrossRefGoogle Scholar
  54. Pollard DA (1971a) The biology of a landlocked form of the normally catadromous salmoniform fish Galaxias maculatus (Jenyns) II. Morphology and systematic relationships. Aust J Mar Freshwat Res 22:125–137. CrossRefGoogle Scholar
  55. Pollard DA (1971b) The biology of a landlocked form of the normally catadromous salmoniform fish Galaxias maculatus (Jenyns). I. Life cycle and origin. Aust J Mar Freshwat Res 22:91–123CrossRefGoogle Scholar
  56. Powell D (1979) Estimation of mortality and growth parameters for the length frequency of a catch. Raport process–V. Réunion Conseil International pour L’Exploitation de la Mer 175:167–169Google Scholar
  57. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  58. Rypel AL (2011) Meta-analysis of growth for five North American catfishes: effects of climate, hydrologic habitat, and latitudinal countergradients. In: Michaletz PH, Travnichek VH (eds) Conservation, ecology, and management of worldwide catfish. American fisheries society, Bethesda, United States, p 661–677Google Scholar
  59. Rypel AL (2012) Concordant estimates of countergradient growth variation in striped bass (Morone saxatilis) using comparative life-history data. Can J Fish Aquat Sci 69:1261–1265. CrossRefGoogle Scholar
  60. Shepherd JG (1987) A weakly parametric method for estimating growth parameters from length composition data. In: Pauly D, Morgan GR (eds) Length-based methods in fisheries research. ICLARM Conf. Proc. 13. Manila, pp 113–119Google Scholar
  61. Shuter BJ, Post JR (1990) Climate, population viability, and the zoogeography of temperate fishes. Trans Am Fish Soc 119:314–336CrossRefGoogle Scholar
  62. Sparre P, Venema S (1997) Introducción a la evaluación de recursos pesqueros tropicales. Parte 1. Manual. FAO Documento Técnico de Pesca. N° 306.1 Rev. 2: 420 ppGoogle Scholar
  63. Stevens JCB, Hickford MJH, Schiel DR (2016) Evidence of iteroparity in the widely distributed diadromous fish inanga Galaxias maculatus and potential implications for reproductive output. J Fish Biol 89:1931–1946. CrossRefPubMedGoogle Scholar
  64. Tagliaferro M, Quiroga A, Pascual M (2014) Spatial pattern and habitat requirements of Galaxias maculatus in the last un-interrupted large river of Patagonia: a baseline for management. Environment and. Nat Resour Res 4:54–63. CrossRefGoogle Scholar
  65. Teplitsky C, Millien V (2013) Climate warming and Bergmann’s rule through time: is there any evidence? Evol Appl 7(1):156–168. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vega R, Dantagnan P, Mardones A, Valdebenito I, Zamorano J, Encina F (2013) Bases biológicas para el cultivo del puye Galaxias maculatus (Jenyns, 1842): una revisión. Lat Am J Aquat Res 41(3):369–386Google Scholar
  67. Venturelli PA, Lester NP, Marshall TR, Shuter BJ (2010) Consistent patterns of maturity and densitydependent growth among populations of walleye (Sander vitreus): application of the growing degree-day metric. Can J Fish Aquat Sci 67:1057–1067. CrossRefGoogle Scholar
  68. von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws, II). Hum Biol 10(2):181–213Google Scholar
  69. Wetherall J (1986) A new method for estimating growth and mortality parameters from length-frequency data. Aust Fish 4:12–14Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Javier H. Rojo
    • 1
    • 2
  • Daniel E. Figueroa
    • 2
  • Claudia C. Boy
    • 1
  1. 1.Centro Austral de Investigaciones Científicas (CADIC) – CONICETUshuaiaArgentina
  2. 2.Instituto de Investigaciones Marinas y Costeras (IIMyC) – CONICETUniversidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations