Mitochondrial and nuclear genetic structure in Rhodeus ocellatus (Teleostei: Cyprinidae) with approximate Bayesian computation

Abstract

The rosy bitterling, Rhodeus ocellatus, is a small freshwater fish belonging to the family Cyprinidae. This species lives in ponds where freshwater mussels are abundant and female lays eggs inside mussels. To understand whether the reproduction mode influenced the phylogeography, our study examined the genetic structure of R. ocellatus using sequences from the mitochondrial DNA (cytochrome b gene and control region) and nuclear DNA (the first intron of ribosomal protein S7 gene). In total, 213 specimens were collected from twelve populations in south of Yangtze River, including Yangtze River, Taiwan and Hainan Islands. The phylogenetic analyses based on mitochondrial and nuclear sequences both showed the lack of a population genetic structure, but all results, including the approximate Bayesian computation approaches, showed that these two markers revealed incongruent historical signals. Our study found that (1) the discordance between these two markers were accounted for admixtures by introduced; (2) the phylogeographic pattern of R. ocellatus and that of other freshwater fish were identical; (3) the reproduction mode was due to that the gene flows among populations were limited; and (4) R. ocellatus colonized in south of the Yangtze River (including) after southeast coastal districts formed and before Taiwan Island reached its present shape by comparing our results with that of the previous studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13(4):729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x

    Article  PubMed  Google Scholar 

  2. Ballard JW, Chernoff B, James AC (2002) Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behavior in Drosophila simulans. Evolution 56(3):527–545. https://doi.org/10.1111/j.0014-3820.2002.tb01364.x

    Article  PubMed  Google Scholar 

  3. Berrebi P, Retif A, Fang F, Zhang CG (2006) Population structure and systematics of Opsariichthys bidens (Osteichthyes: Cyprinidae) in south-east China using a new nuclear marker: the introns (EPIC-PCR). Biol J Linn Soc 87(1):155–166. https://doi.org/10.1111/j.1095-8312.2006.00563.x

    Article  Google Scholar 

  4. Brito PH (2007) Contrasting patterns of mitochondrial and microsatellite genetic structure among western European populations of tawny owls (Strix aluco). Mol Ecol 16(16):3423–3437. https://doi.org/10.1111/j.1365-294X.2007.03401.x

    CAS  Article  PubMed  Google Scholar 

  5. Chen XL, Chiang TY, Lin HD, Zheng HS, Shao KT, Zhang Q, Hsu KC (2007) Mitochondrial DNA phylogeographyof Glyptothorax fokiensis and Glyptothorax hainanensis in Asia. J Fish Biol 70(sa):75–93. https://doi.org/10.1111/j.1095-8649.2007.01370.x

    CAS  Article  Google Scholar 

  6. Chiang TY, Lin HD, Shao KT, Hsu KC (2010) Multiple factors have shaped the phylogeography of Chinese spiny loach (Cobitis sinensis) in Taiwan as inferred from mitochondrial DNA variation. J Fish Biol 76(5):1173–1189. https://doi.org/10.1111/j.1095-8649.2010.02589.x

    Article  PubMed  Google Scholar 

  7. Chiang TY, Lin HD, Zhao J, Kuo PH, Lee TW, Hsu KC (2013) Diverse processes shape deep phylogeographical divergence in Cobitis sinensis (Teleostei: Cobitidae) in East Asia. J Zool Syst Evol Res 51:316–326

    Google Scholar 

  8. Chiang TY, Chen YY, Lee TW, Hsu KC, Lin FJ, Wang WK, Lin HD (2017) Comparative phylogeography of two codistributed endemic cyprinids in southeastern Taiwan. Biochem Syst Ecol 70:283–290. https://doi.org/10.1016/j.bse.2016.12.010

    CAS  Article  Google Scholar 

  9. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7(9):1255–1256

    CAS  PubMed  Google Scholar 

  10. Clark MK, Schoenbohm LM, Royden LH, Whipple KX, Burchfiel BC, Zhang X, Tang W, Wang E, Chen L (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large scale drainage patterns. Tectonics 23:TC106

    Article  Google Scholar 

  11. Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Estoup A (2014) DIYABC v2. 0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189

    CAS  Article  PubMed  Google Scholar 

  12. Crochet PA (2000) Genetic structure of avian populations—allozymes revisited. Mol Ecol 9(10):1463–1469. https://doi.org/10.1046/j.1365-294x.2000.01026.x

    CAS  Article  PubMed  Google Scholar 

  13. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772–772. https://doi.org/10.1038/nmeth.2109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Drummond AJ, Rambau A, Suchard M (2013) BEAST:1.8.0 http://beast.bio.ed.ac.uk

  15. Dupanloup I, Schneidera S, Excoffier NL (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    CAS  Article  PubMed  Google Scholar 

  16. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10(3):564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  17. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the younger Dryas event and deep-ocean circulation. Nature 342(6250):637–642. https://doi.org/10.1038/342637a0

    Article  Google Scholar 

  18. Froese R, Pauly D (2017) FishBase. World Wide Web electronic publication http://www.fishbase.org

  19. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New Algorithma and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    CAS  Article  PubMed  Google Scholar 

  20. Guo X, Chen D (2010) Comparative evolution of the mitochondrial cytochrome b gene and nuclear S7 ribosomal protein gene intron 1 in sinipercid fishes and their relatives. Hydrobiologia 649(1):139–156. https://doi.org/10.1007/s10750-010-0236-5

    CAS  Article  Google Scholar 

  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  22. He SP, Mayden RL, Wang XZ, Wang W, Tang KL, Chen WJ, Chen YY (2008) Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family. Mol Phylogenet Evol 46:818–829

  23. Hsu KC, Bor H, Lin HD, Kuo PH, Tan MS, Chiu YW (2014) Mitochondrial DNA phylogeography of Semisulcospira libertina (Gastropoda: Cerithioidea: Pleuroceridae): implications the history of landform changes in Taiwan. Mol Biol Rep 41(6):3733–3743. https://doi.org/10.1007/s11033-014-3238-y

    CAS  Article  PubMed  Google Scholar 

  24. Huang J (1945) Major division of tectonic units in China. Earthquake Press, Beijing, China (in Chinese)

    Google Scholar 

  25. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    CAS  Article  PubMed  Google Scholar 

  26. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Monro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132. https://doi.org/10.1016/B978-1-4832-3211-9.50009-7

    Google Scholar 

  27. Kawamura K, Nagata Y, Ohtaka H, Kanoh Y, Kitamura J (2001) Genetic diversity in the Japanese rosy bitterling, Rhodeus ocellatus kurumeus (Cyprinidae). Ichthyol Res 48:369–378

    Article  Google Scholar 

  28. Kottelat M (2001) Fishes of Laos. WHT publications ltd., Colombo 5, Sri Lanka, pp 198

  29. Lang NJ, Mayden RL (2007) Systematics of the subgenus Oligocephalus (Teleostei: Percidae: Etheostoma) with complete subgeneric sampling of the genus Etheostoma. Mol Phylogenet Evol 43:605–615

  30. Li S (1981) Studies on zoogeographical divisions for fresh water fishes of China. Science Press

  31. Lin HD, Kuo PH, Wang WK, Chiu YW, Ju YM, Lin FJ, Hsu KC (2016) Speciation and differentiation of the genus Opsariichthys (Teleostei: Cyprinidae) in East Asia. Biochem Syst Ecol 68:92–100. https://doi.org/10.1016/j.bse.2016.07.001

    CAS  Article  Google Scholar 

  32. Liu HZ (1998) A preliminary analysis to biogeographical process of the eastern Asian freshwater fishes. Acta Zootaxon Sin 23:49–55

    Google Scholar 

  33. Liu D, Guo HY, Tang WQ, Yang JQ (2012) Comparative evolution of S7 intron 1 and ribosomal internal transcribed spacer in Coilia nasus (Clupeiformes: Engraulidae). Int J Mol Sci 13(12):3085–3100. https://doi.org/10.3390/ijms13033085

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Musilová Z, Rícan O, Janko K, Novák J (2008) Molecular phylogeny and biogeography of the neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae). Mol Phylogenet Evol 46:659–672

  35. Nei M, Tajima F (1983) Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105(1):207–217

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered vs. unordered alleles. Genetics 144(3):1237–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Qu Y, Zhang R, Quan Q, Song G, Li SH, Lei F (2012) Incomplete lineage sorting or secondary admixture: disentangling historical divergence from recent gene flow in the vinous-throated parrotbill (Paradoxornis webbianus). Mol Ecol 21(24):6117–6133. https://doi.org/10.1111/mec.12080

    Article  PubMed  Google Scholar 

  38. Rambaut A (2014) FigTree:1.3 Available at: http://tree.bio.ed.ac.uk/software/figtree/

  39. Rambaut A, Suchard MA, Xie D, Dremmond AJ (2014) Trace:v1.6 Available from http://tree.bio.ed.ac.uk/software/tracer/

  40. Ren ME, Han TC (1959) The Jinsha River valley landforms and river-capture in northwestern Yunnan. Acta Geograph Sin 25:135–155

    Google Scholar 

  41. Rozas J, JC S-DB, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497. https://doi.org/10.1093/bioinformatics/btg359

    CAS  Article  PubMed  Google Scholar 

  42. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    CAS  PubMed  Google Scholar 

  43. Templeton AR (1993) The “eve” hypotheses: a genetic critique and reanalysis. Am Anthropol 95(1):51–72. https://doi.org/10.1525/aa.1993.95.1.02a00030

    Article  Google Scholar 

  44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. https://doi.org/10.1093/nar/25.24.4876

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Wang CF, Hsieh CH, Lee SC, Wang HY (2011) Systematics and phylogeography of the Taiwanese endemic minnow Candidia barbatus (Pisces: Cyprinidae) based on DNA sequence, allozymic, and morphological analyses. Zool J Linnean Soc 161(3):613–632. https://doi.org/10.1111/j.1096-3642.2010.00646.x

    Article  Google Scholar 

  46. Welcomme RL (1988) International introductions of inland aquatic species. FAO Fish Tech Pap 294:318

    Google Scholar 

  47. Xiao W, Zhang Y, Liu H (2001) Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol Phylogenet Evol 18:163–173

    CAS  Article  PubMed  Google Scholar 

  48. Yang S, Dong H, Lei F (2009) Phylogeography of regional fauna on the Tibetan plateau: a review. Prog Nat Sci 19:789–799

    CAS  Article  Google Scholar 

  49. Yang JQ, Tang WQ, Liao TY, Sun Y, Zhou ZC, Han CC, Liu D, Lin HD (2012) Phylogeographical analysis on Squalidus argentatus recapitulates historical landscapes and drainage evolution on the island of Taiwan and mainland China. Int J Mol Sci 13(12):1405–1425. https://doi.org/10.3390/ijms13021405

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Yang JQ, Hsu KC, Liu ZZ, Su LW, Kuo PH, Tang WQ, Lin HD (2016) The population history of Garra orientalis (Teleostei: Cyprinidae) using mitochondrial DNA and microsatellite data with approximate Bayesian computation. BMC Evol Biol 16(1):73. https://doi.org/10.1186/s12862-016-0645-9

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yap SY (2002) On the distributional patterns of southeast-east Asian freshwater fish and their history. J Biogeogr 29(9):1187–1199. https://doi.org/10.1046/j.1365-2699.2002.00771.x

    Article  Google Scholar 

  52. Yu Y, Harris AJ, He X (2010) S-DIVA (statistical dispersal-Vicariance analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 56:848–850

  53. Zarza E, Reynoso VH, Emerson BC (2011) Discordant patterns of geographic variation between mitochondrial and microsatellite markers in the Mexican black iguana (Ctenosaura pectinata) in a contact zone. J Biogeogr 38(7):1394–1405. https://doi.org/10.1111/j.1365-2699.2011.02485.x

    Article  Google Scholar 

  54. Zhang E (1999) Studies of morphometrics, systematic and biogeography of the cyprinid genus Sinilabeo, Rendahl 1932. PhD Thesis, Institute of Hydrobiology. Chinese Academy of Sciences

  55. Zhang HN, Chen CG, Huang KR, Li ZQ, Zhang FL, Chen GZ (1990) The new geological structures, tectonic movements and geological environment in coastal line of South China. Earthquake Press, Beijing (in Chinese)

    Google Scholar 

  56. Zhang L, Tang QY, Liu HZ (2008) Phylogeny and speciated of eastern Asian cyprinid genus Sarcocheilichthys. J Fish Biol 72(5):1122–1137. https://doi.org/10.1111/j.1095-8649.2007.01733.x

    CAS  Article  Google Scholar 

  57. Zheng HS (2004) Freshwater fish fauna and biogeography of eight rivers in East Guangdong, China. MSc dissertation, Institute of Zoology, South China Normal University, Guangzhou, China

  58. Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17(9):2107–2121. https://doi.org/10.1111/j.1365-294X.2008.03737.x

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (No. 31172066), and Shanghai Universities First-class Disciplines Project of Fisheries. This research supported by the Research Fund Program of Guangxi Key Lab of Mangrove Conservation and Utilization (Grant No. GKLMC-201307 and GKLMC-201404). We also thank the anonymous referees for their helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hung-Du Lin.

Ethics declarations

Ethics statement

The animal experiments were performed under an animal ethics approval granted by the Shanghai Ocean University. Our sampling procedures did not affect the survival of studies species.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Hsu, K., Kuo, P. et al. Mitochondrial and nuclear genetic structure in Rhodeus ocellatus (Teleostei: Cyprinidae) with approximate Bayesian computation. Environ Biol Fish 101, 829–841 (2018). https://doi.org/10.1007/s10641-018-0741-3

Download citation

Keywords

  • Approximate Bayesian computation
  • Introduced
  • Mitochondria
  • Nuclear
  • Rhodeus ocellatus