Skip to main content

Advertisement

Log in

Allis shad adopts an efficient spawning tactic to optimise offspring survival

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The potential effects of global warming on the allis shad population were tested by combining a time series of spawning acts with expected thermal survival rates for embryos and larvae until 14 days post hatching. The yearly mean survival of spawn for each reproductive season was calculated and an index of reproductive efficiency based on this survival rate was proposed. The randomness of the spawning tactics was evaluated by shuffling the spawn acts time series. This approach was applied to the Gironde-Garonne-Dordogne (south-west France) population, which recently collapsed. The yearly mean thermal survival of spawn is slightly variable at approximately 55% over 2003–2012 despite fluctuating temperatures. An especially low survival (35%) was recorded for the last season (2013). For eight of the 11 reproductive seasons, the index of reproductive efficiency was high (> 80%) and largely above indices obtained by a random spawning tactic. Therefore shad are able to adopt an efficient spawning tactic to anticipate favourable thermal conditions for survival of their offspring. However, thermal behavioural rules still need to be expanded to understand the failures in their reproduction efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acolas ML, Begout Anras ML, Veron V et al (2004) An assessment of the upstream migration and reproductive behaviour of allis shad (Alosa alosa L.) using acoustic tracking. ICES J Mar Sci 61(8):1291–1304. https://doi.org/10.1016/j.icesjms.2004.07.023

    Article  Google Scholar 

  • Acolas ML, Veron V, Jourdan H et al (2006) Upstream migration and reproductive patterns of a population of Allis shad in a small river (L’Aulne, Brittany, France). ICES J Mar Sci 63(3):476–484. https://doi.org/10.1016/j.icesjms.2005.05.022

    Article  Google Scholar 

  • Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27(4):249–268. https://doi.org/10.1016/S0306-4565(01)00094-8

    Article  Google Scholar 

  • Aprahamian MW, Aprahamian CD (2001) The influence of water temperature and flow on year class strength of twaite shad (Alosa fallax fallax) from the river Severn, England. Bull Fr Pêche Piscic 362(363):953–972

    Article  Google Scholar 

  • Baglinière JL, Sabatié MR, Alexandrino P et al (2000) Les aloses: une richesse patrimoniale à conserver et à valoriser. In: Baglinière JL, Elie P (eds) Les aloses (Alosa alosa et Alosa fallax spp. ). Cemagref Editions - INRA Editions, pp 263–275

  • Béguer M, Beaulaton L, Rochard E (2007) Distribution and richness of diadromous fish assemblages in western Europe: large scale explanatory factors. Ecol Freshw Fish 16(2):221–237. https://doi.org/10.1111/j.1600-0633.2006.00214.x

    Article  Google Scholar 

  • Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of north American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fish 58(3):237–275. https://doi.org/10.1023/A:1007676325825

    Article  Google Scholar 

  • Belliard J, Marchal J, Ditche JM, Tales E, Sabatié R, Baglinière JL (2009) Return of adult anadromous allis shad (Alosa alosa L.) in the river seine, France: a sign of river recovery? River Res Appl 25(6):788–794. https://doi.org/10.1002/rra.1221

    Article  Google Scholar 

  • Boisneau P, Mennesson-Boisneau C, Bagliniere JL (1990) Description d’une frayère et comportement de reproduction de la grande alose (Alosa alosa L.) dans le cours supérieur de la Loire. Bull Fr Pêche Piscic 316:15–23

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789. https://doi.org/10.1890/03-9000

    Article  Google Scholar 

  • Cassou-Leins F, Cassou-Leins JJ (1981) Recherches sur la biologie et l’halieutique des migrateurs de la Garonne et principalement de l’alose, Alosa alosa L. Thèse de doctorat, Sciences agronomiques, E.N.S.A. Toulouse

  • Cassou-Leins JJ, Cassou-leins F, Boisneau P, Bagliniere J-L (2000) La reproduction. In: Bagliniere JL, Elie P (eds) Les Aloses (Alosa alosa et Alosa fallax spp.): Ecobiologie et variabilité des Populations, Inra-Cemagref. pp 73–92

  • Chambers RC, Leggett WC (1996) Maternal influences on variation in egg sizes in temperate marine fishes. Am Zool 36(2):180–196. https://doi.org/10.1093/icb/36.2.180

    Article  Google Scholar 

  • Chanseau M, Castelnaud G, Carry L et al (2004) Essai d’évaluation du stock de géniteurs d’alose Alosa alosa du bassin versant Gironde-Garonne-Dordogne sur la période 1987-2001 et comparaison de différents indicateurs d’abondance. Bull Fr Pêche Piscic 374:1–19. https://doi.org/10.1051/kmae/2004023

    Article  Google Scholar 

  • Clayton DA (1978) Socially facilitated behavior. Q Rev Biol 53(4):373–392. https://doi.org/10.1086/410789

    Article  Google Scholar 

  • Collin S, Rochard E (2012) Projet de tableau de bord de la grande alose du bassin versant Gironde-Garonne-Dordogne, méthodes, résultats et perspectives de la démarche. Rapport Irstea, centre de Bordeaux

  • Crecco VA, Savoy TF (1985) Effects of biotic and abiotic factors on growth and relative survival of young American shad, Alosa sapidissima in the Connecticut river. Can J Fish Aquat Sci 42(10):1640–1648. https://doi.org/10.1139/f85-205

    Article  Google Scholar 

  • Crecco V, Savoy T (1987) Review of recruitment mechanisms of the American shad: the critical period and match-mismatch hypotheses reexamined. Am Fish Soc Symp 1:455–468

    Google Scholar 

  • Crecco V, Savoy T, Gunn L (1983) Daily mortality rates of larval and juvenile American shad (Alosa sapidissima) in the Connecticut River with changes in year-class strength. Can J Fish Aquat Sci 40(10):1719–1728. https://doi.org/10.1139/f83-199

    Article  Google Scholar 

  • Crozier LG, Hutchings JA (2014) Plastic and evolutionary responses to climate change in fish. Evol Appl 7(1):68–87. https://doi.org/10.1111/eva.12135

    Article  PubMed  PubMed Central  Google Scholar 

  • Crozier LG, Hendry AP, Lawson PW, Quinn TP, Mantua NJ, Battin J, Shaw RG, Huey RB (2008) Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol Appl 1(2):252–270. https://doi.org/10.1111/j.1752-4571.2008.00033.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durham BW, Wilde GR (2006) Influence of stream discharge on reproductive success of a prairie stream fish assemblage. Trans Am Fish Soc 135(6):1644–1653. https://doi.org/10.1577/T05-133.1

    Article  Google Scholar 

  • Gaillagot A, Carry L (2014) Suivi de la reproduction de la grande alose sur la Garonne en 2014. Rapport MIGADO, Le Passage http://oai.eau-adour-garonne.fr/oai-documents/60949/GED_00000000.pdf

    Google Scholar 

  • Golovanov VK (2013) Ecophysiological patterns of distribution and behavior of freshwater fish in thermal gradients. J Ichthyol 53(4):252–280. https://doi.org/10.1134/S0032945213030016

    Article  Google Scholar 

  • Houde ED (1989) Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish Bull 87:471–495

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15(2):56–61. https://doi.org/10.1016/S0169-5347(99)01764-4

    Article  CAS  PubMed  Google Scholar 

  • Hundt M, Scharbert A, Weibel U, Kuhn G, Metzner K, Jatteau P, Pies A, Schulz R, Gergs R (2015a) First evidence of natural reproduction of the Allis shad Alosa alosa in the river Rhine following re-introduction measures. J Fish Biol 87(2):487–493. https://doi.org/10.1111/jfb.12721

    Article  CAS  PubMed  Google Scholar 

  • Hundt M, Schiffer M, Weiss M, Schreiber B, Kreiss CM, Schulz R, Gergs R (2015b) Effect of temperature on growth, survival and respiratory rate of larval allis shad Alosa alosa. Knowl Manag Aquat Ecosyst 416(416):27. https://doi.org/10.1051/kmae/2015023

    Article  Google Scholar 

  • Hyle AR, McBride RS, Olney JE (2014) Determinate versus indeterminate fecundity in American shad, an anadromous clupeid. Trans Am Fish Soc 143(3):618–633. https://doi.org/10.1080/00028487.2013.862178

    Article  Google Scholar 

  • ICES (2014) Report of the workshop on lampreys and shads 27-29 November 2014 Lisbon Portugal

  • Jatteau P, Fraty R (2012) Etude de la tolérance à l’hypoxie des juvéniles de grande alose (Alosa alosa). Irstea

  • Jatteau P, Drouineau H, Charles K, Carry L, Lange F, Lambert P (2017) Thermal tolerance of allis shad (Alosa alosa) embryos and larvae: modelling and potentials applications. Aquat Living Resour 30:2. https://doi.org/10.1051/alr/2016033

    Article  Google Scholar 

  • Jonsson B, Jonsson N (2009) A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J Fish Biol 75(10):2381–2447. https://doi.org/10.1111/j.1095-8649.2009.02380.x

    Article  CAS  PubMed  Google Scholar 

  • Kennedy RJ, Crozier WW (2010) Evidence of changing migratory patterns of wild Atlantic salmon Salmo salar smolts in the river bush, Northern Ireland, and possible associations with climate change. J Fish Biol 76(7):1786–1805. https://doi.org/10.1111/j.1095-8649.2010.02617.x

    Article  CAS  PubMed  Google Scholar 

  • Lambert TC (1990) The effect of population structure on recruitment in herring. J Cons ICES J Mar Sci 47(2):249–255. https://doi.org/10.1093/icesjms/47.2.249

    Article  Google Scholar 

  • Lanoux A, Etcheber H, Schmidt S, Sottolichio A, Chabaud G, Richard M, Abril G (2013) Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France). Environ Sci Process Impacts 15(3):585–595. https://doi.org/10.1039/C2EM30874F

    Article  CAS  PubMed  Google Scholar 

  • Lassalle G, Rochard E (2009) Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East. Glob Change Biol 15(5):1072–1089. https://doi.org/10.1111/j.1365-2486.2008.01794.x

    Article  Google Scholar 

  • Lassalle G, Béguer M, Beaulaton L, Rochard E (2008) Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biol Conserv 141(4):1105–1118. https://doi.org/10.1016/j.biocon.2008.02.010

    Article  Google Scholar 

  • Lassalle G, Crouzet P, Rochard E (2009) Modelling the current distribution of European diadromous fishes: an approach integrating regional anthropogenic pressures. Freshw Biol 54(3):587–606. https://doi.org/10.1111/j.1365-2427.2008.02135.x

    Article  Google Scholar 

  • Leggett WC, Whitney RR (1972) Water temperature and the migrations of American shad. Fish Bull 70:659–670

    Google Scholar 

  • Lorda E, Crecco VA (1987) Stock-recruitment relationship and compensatory mortality of American shad in the Connecticut river. Am Fish Soc Symp 1:469–482

    Google Scholar 

  • Martin Vandembulcke D (1999) Dynamique de population de la grande alose (Alosa alosa, L. 1758) dans le bassin versant Gironde-Garonne-Dordogne (France): analyse et prévision par modélisation. Thèse de doctorat, Ecole Nationale Polytechnique

  • Martin J, Rougemont Q, Drouineau H, Launey S, Jatteau P, Bareille G, Berail S, Pécheyran C, Feunteun E, Roques S, Clavé D, Nachón DJ, Antunes C, Mota M, Réveillac E, Daverat F (2015) Dispersal capacities of anadromous Allis shad population inferred from a coupled genetic and otolith approach. Can J Fish Aquat Sci 72(7):991–1003. https://doi.org/10.1139/cjfas-2014-0510

    Article  Google Scholar 

  • Mennesson-Boisneau C, Aprahamian MW, Sabatié MR, Cassou-Leins JJ (2000) Biologie des aloses : remontée migratoire des adultes. In: Baglinière JL, Elie P (eds) Les aloses (Alosa alosa et Alosa fallax spp.): écobiologie et variabilité des populations. Cemagref, Inra Éditions, Paris, pp 55–72

  • Mion JB, Stein RA, Marschall EA (1998) River discharge drives survival of larval walleye. Ecol Appl 8(1):88–103. https://doi.org/10.1890/1051-0761(1998)008[0088:RDDSOL]2.0.CO;2

    Article  Google Scholar 

  • Moss SA (1970) The responses of young American shad to rapid temperature changes. Trans Am Fish Soc 99(2):381–384. https://doi.org/10.1577/1548-8659(1970)99<381:troyas>2.0.co;2

    Article  Google Scholar 

  • Murua H, Kraus G, Saborido-Rey F, Wittames PR, Thorsen A, Junquera S (2003) Procedures to estimate fecundity of marine fish species in relation to their reproductive strategy. J Northwest Atl Fish Sci 33:33–54. https://doi.org/10.2960/J.v33.a3

    Article  Google Scholar 

  • Nack CC, Limburg KE, Miller D (2015) Assessing the quality of four inshore habitats used by post yolk-sac Alosa sapidissima (Wilson 1811) in the Hudson River: a prelude to restoration. Restor Ecol 23(1):57–64. https://doi.org/10.1111/rec.12122

    Article  Google Scholar 

  • Ochi H (1986) Breeding synchrony and spawning intervals in the temperate damselfish Chromis notata. Environ Biol Fish 17(2):117–423. https://doi.org/10.1007/BF00001741

    Article  Google Scholar 

  • Olney JE, McBride RS (2003) Intraspecific variation in batch fecundity of American shad: revisiting the paradigm of reciprocal latitudinal trends in reproductive traits. In: Limburg K, Waldman JR (eds) Biodiversity, status, and conservation of the world’s shads. Am. Fish. Soc. Symp., pp 185–192

  • Pigliucci M (1996) How organisms respond to environmental changes: from phenotypes to molecules (and vice versa). Trends Ecol Evol 11(4):168–173. https://doi.org/10.1016/0169-5347(96)10008-2

    Article  Google Scholar 

  • Quinn TP, Adams DJ (1996) Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77(4):1151–1162. https://doi.org/10.2307/2265584

    Article  Google Scholar 

  • Reichard M, Jurajda P (2004) The effects of Elevated River discharge on the downstream drift of young-of-the-year cyprinid fishes. J Freshw Ecol 19(3):465–471. https://doi.org/10.1080/02705060.2004.9664921

    Article  Google Scholar 

  • Reynolds WW (1978) The final thermal preferendum of fishes: shuttling behavior and acclimation overshoot. Hydrobiologia 57(2):123–124. https://doi.org/10.1007/BF00016455

    Article  Google Scholar 

  • Rochard E (2001) Migration anadrome estuarienne des géniteurs de grande alose Alosa alosa, allure du phénomène et influence du rythme des marées. BFPP - Bull Francais Peche Prot Milieux Aquat 362–363:853–867

    Article  Google Scholar 

  • Ross R, Bennett R, Backman T (1993) Habitat use by spawning adult, egg, and larval American shad in the Delaware River. Rivers 4:227–238

    Google Scholar 

  • Rougier T, Lambert P, Drouineau H, Girardin M, Castelnaud G, Carry L, Aprahamian M, Rivot E, Rochard E (2012) Collapse of allis shad, Alosa alosa, in the Gironde system (southwest France): environmental change, fishing mortality, or Allee effect? ICES J Mar Sci J Cons 69(10):1802–1811. https://doi.org/10.1093/icesjms/fss149

    Article  Google Scholar 

  • Rougier T, Lassalle G, Drouineau H, Dumoulin N, Faure T, Deffuant G, Rochard E, Lambert P (2015) The combined use of empirical and mechanistic species distribution models benefits low conservation status species. PLoS One 10(10):e0139194. https://doi.org/10.1371/journal.pone.0139194

    Article  PubMed  PubMed Central  Google Scholar 

  • Roule L (1922) La migration reproductrice et la protandrie de l’alose feinte (Alosa finta L.) Ann Sci Nat Zool 5:61–76

    Google Scholar 

  • Roule L (1923) Notes sur les aloses de la Loire et de l’Aquitaine. Bull Société Cent Aquic Fr 30:14–22

    Google Scholar 

  • Savoy TF, Crecco VA (1988) The timing and significance of density-dependent and density-independent mortality of American shad, Alosa sapidissima. Fish Bull 86:467–481

    Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3(3):259–268. https://doi.org/10.2307/2389364

    Article  Google Scholar 

  • Stoll S, Probst WN, Eckmann R, Fischer P (2010) A mesocosm experiment investigating the effects of substratum quality and wave exposure on the survival of fish eggs. Aquat Sci 72(4):509–517. https://doi.org/10.1007/s00027-010-0152-9

    Article  Google Scholar 

  • Taverny C, Belaud A, Elie P, Sabatie MR (2000) Influence des activités humaines. In: Bagliniere JL, Elie P (eds) Les aloses (Alosa alosa et Alosa fallax spp.): écobiologie et variabilité des populations. INRA - Cemagref, Paris Antony, pp 227–248

  • Travade F, Carry L (2008) Effet de la canicule de 2003 sur les poissons migrateurs en Garonne et Dordogne - Réflexions sur l’effet des rejets thermiques de la centrale nucléaire de Golfech sur la Garonne. Hydroécologie Appliquée 16:169–189. https://doi.org/10.1051/hydro/2009008

    Article  Google Scholar 

  • Ulanowicz RE (1975) The mechanical effects of water flow on fish eggs and larvae. In: Saila SB (ed) Fisheries and energy production: a symposium. Lexington Books, Lexington, pp 77–87

    Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc B Biol Sci 275(1635):649–659. https://doi.org/10.1098/rspb.2007.0997

    Article  Google Scholar 

  • Walton SE, Nunn AD, Probst WN, et al (2017) Do fish go with the flow? The effects of periodic and episodic flow pulses on 0+ fish biomass in a constrained lowland river. Ecohydrology 10:n/a-n/a. doi:https://doi.org/10.1002/eco.1777

  • Wehrly KE, Brenden TO, Wang L (2009) A comparison of statistical approaches for predicting stream temperatures across heterogeneous landscapes. J Am Water Resour Assoc 45(4):986–997. https://doi.org/10.1111/j.1752-1688.2009.00341.x

    Article  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20(1):249–278. https://doi.org/10.1146/annurev.es.20.110189.001341

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted with the financial support of the Conseil Régional de Nouvelle Aquitaine (FAUNA project) and Agence de l’Eau Adour-Garonne (SHAD’EAU project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Lambert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambert, P., Jatteau, P., Paumier, A. et al. Allis shad adopts an efficient spawning tactic to optimise offspring survival. Environ Biol Fish 101, 315–326 (2018). https://doi.org/10.1007/s10641-017-0700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-017-0700-4

Keywords