Study of the chorion of seasonal and non-seasonal Africa and Neotropical oviparous Cyprinodontiforme fishes

  • Nadia Messaddeq
  • Josiane Hergueux
  • Jean-Luc Weickert
  • Raymond Romand
Article

Abstract

The structure of the chorion from the fertilized eggs of eight species of killifish, four Nothobranchiidae from tropical Africa and four Rivulidae species from South America and an Asian Cyprinidae (zebrafish), were investigated for possible structural similarities by transmission and scanning electron microscopy. The study of the possible chorion variations between seasonal fishes inhabiting temporary pools of tropical regions and other, non-seasonal species revealed variations in the several types of complex adornments found on the external chorion surface when compared with the less complex chorion of the zebrafish. The inner structure of the chorion of these killifish species comprises alternating electron dense and clear strata, with the number of strata varying by species as well as the thickness of the chorion. No obvious phylogenetic or ecological relationships were observed either between the chorion adornments and the inner organization of the chorion or between the seasonal and non-seasonal species. It is advised to perform studies with a larger sample of species that could show a relation either from ecological or phylogenetic parameters.

Keywords

Ecology Egg external envelope Killifish South America and Africa Ultrastructure Zebrafish 

Notes

Acknowledgements

We thank H. Salvia (Uruguay), D. Pillet and S. Roth (France) for providing material for this study and A. Persson (Sweden) F. Vermeulen (Aruba) for their pictures.

References

  1. Ahlstrom EH, Moser GF (1980) Characters useful in identification of pelagic marine fish eggs. CalCOFI Rep. Vol. XXIGoogle Scholar
  2. Anderson E (1967) The formation of the primary envelope during oocyte differentiation in Teleosts. J Cell Biol 35(1):193–212. https://doi.org/10.1083/jcb.35.1.193 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson SN, Podrabsky JE (2014) The effects of hypoxia and temperature on metabolic aspects of embryonic development in the annual killifish Austrofundulus limnaeus. J Comp Physiol B Bioch Syst Environ Physiol 184(3):355–370. https://doi.org/10.1007/s00360-014-0803-6 CrossRefGoogle Scholar
  4. Arenzon A, Lemos CA, Bohrer MBC (2002) The influence of temperature on the embryonic development of the annual fish Cynopoecilus melanotaenia (Cyprinodontiformes, Rivulidae). Braz J Biol 62(4b):743–747. https://doi.org/10.1590/S1519-69842002000500002 CrossRefPubMedGoogle Scholar
  5. Arezo MJ, Pereiro L, Berois N (2005) Early development in the annual fish Cynolebias viarus. J Fish Biol 66(5):1357–1370. https://doi.org/10.1111/j.1095-8649.2005.00688 CrossRefGoogle Scholar
  6. Baldacci A, Taddei AR, Mazzini M, Fausto AM, Buonocore F, Scapigliati G (2001) Ultrastructure and proteins of the egg chorion of the antartic fish Chionodraco hamatus (Teleostei, Notothenioidei). Polar Biol 24(6):417–421. https://doi.org/10.1007/s003000100233 CrossRefGoogle Scholar
  7. Barrett RD, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 3(1):38–44. https://doi.org/10.1016/j.tree.2007.09.008 CrossRefGoogle Scholar
  8. Berois N, Arezo MJ, Papa NG (2011) Gamete interaction in teleost fish: the egg envelope. Basic studies and perspectives as environmental biomonitor. Biol Res 44(2):119–124. https://doi.org/10.4067/S0716-97602011000200002 CrossRefPubMedGoogle Scholar
  9. Berois N, Arezo ML, Papa NG, Clivio GA (2012) Annual fish: developmental adaptation for an extreme environment. Wires Dev Biol 1(4):595–602. https://doi.org/10.1002/vdev.39 CrossRefGoogle Scholar
  10. Berois N, Maria J, Arezo MJ, de Sá RO (2014) The neotropical genus Austrolebias: an emerging model of annual killifishes. Cell & Dev Biol 3(02):2–9. https://doi.org/10.4172/2168-9296.1000136 Google Scholar
  11. Betancur RR, Broughton RE, Wiley EO, Carpenter K, Lopez JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton J, Zhang F, Buser T, Campbell M, Rowley T, Ballesteros JA, Lu G, Grande T, Arratia G, Ortí G (2013) The tree of life and a new classification of bony fishes. PLoS Currents Tree of Life 5. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
  12. Betancur RR, Wiley EO, Bailly N, Acero A, Miya M, Lecointre G, Ortí G. (2016). Phylogenetic classification of bony fishes – version 4. https://sites.google.com/site/guilleorti/classification-v-4
  13. Bian X, Zhang X, Sakurai Y, Jin X, Gao T, Wan R, Yamamoto J (2014) Envelope surface ultrastructure and specific gravity of artificially fertilized Pacific cod Gadus macrocephalus eggs. J Fish Biol 84(2):403–421. https://doi.org/10.1111/jfb.12292 CrossRefPubMedGoogle Scholar
  14. Brosset A (2003) Convergent and divergent evolution in rain-forest populations and communities of cyprinodontiform fishes (Aphyosemion and Rivulus) in Africa and South America. Can J Zool 81(9):1484–1493. https://doi.org/10.1139/z03-125 CrossRefGoogle Scholar
  15. Cellerino A, Valenzano DR, Reichard M (2016) From the bush to the bench: the annual Nothobranchius fishes as a new model system in biology. Biol Rev Cambridge Phil Soc J 91(2):511–533. https://doi.org/10.1111/brv.12183 CrossRefGoogle Scholar
  16. Costa WJEM (1998) Phylogeny and classification of Rivulidae revisited origin and evolution of annualism and miniaturization in rivulid fishes (Cypronodontoformes: Aplocheiloidei). J Comp Biol 3:33–92Google Scholar
  17. Costa WJEM, Leal F (2009) Egg surface morphology in the Neotropical seasonal killifish genus Leptolebias (Teleostei: Aplocheiloidei: Rivulidae). Vert Zool 59:25–29Google Scholar
  18. Cotteli F, Andronico F, Brivio M, Lamia CL (1988) Structure and composition of the fish egg chorion (Carasius auratus). J Ultrastruct Mol Struct Res 99(1):70–78. https://doi.org/10.1016/0889-1605(88)90034-1 CrossRefGoogle Scholar
  19. Domínguez-Castanedo O, Mosqueda-Cabrera MA, Valdesalici S (2013) First observations of annualism in Millerichthys robustus (Cyprinodontiformes: Rivulidae). Ichthyological Exploration of Freshwaters 24:15–20Google Scholar
  20. Dumont JN, Brummet AR (1980) The vitelline envelope, chorion, and micropyle of Fundulus heteroclitus eggs. Gamete Res 3(1):25–44. https://doi.org/10.1002/mrd.1120030105 CrossRefGoogle Scholar
  21. Fava D, Toledo-Piza M (2007) Egg surface structure in the annual fishes Simpsonichthys (subgenera Ophthalmolebias and Xenurolebias) and Nematolebias (Teleostei: Cyprinodontiformes: Rivulidae): variability and phylogenetic significance. J Fish Biol 71(3):889–907. https://doi.org/10.1111/j.1095-8649.2007.01572.x CrossRefGoogle Scholar
  22. Furness AI (2016) The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause. Biol Rev 91(6):796–812. https://doi.org/10.1111/evo.12669 CrossRefPubMedGoogle Scholar
  23. Grieson JP, Neville AC (1981) Helicoidal architecture of fish eggshell. Tissue & Cell 13(4):819–830. https://doi.org/10.1016/S0040-8166(81)80016-X CrossRefGoogle Scholar
  24. Guraya SS (1986) The cell and molecular biology of fish oogenesis. Monographs. Dev Biol 18:1–223Google Scholar
  25. Hand SC, Denlinger DL, Podrabsky JE, Roy R (2016) Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am J Physiol Regul Integr Comp Physiol 310(11):R1193–R1211. https://doi.org/10.1152/ajpregu.00250.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hrbek T, Larson A (1999) The evolution of diapauses in the killifish family Rivulidae (Atherinomorpha, Cyprinodontiforme): a molecular phylogenetic and biogeographic perspective. Evolution 53(4):1200–1210. https://doi.org/10.1111/j.1558-5646.1999.tb04533.x CrossRefPubMedGoogle Scholar
  27. Joo KB, Kim DH (2013) Comparative ultrastructures of the fertilized egg envelopes in Danio rerio and Danio rerio var. frankei, Cyprinidae, Teleostei. Applied Microscopy 43(1):14–20. https://doi.org/10.9729/AM.2014.44.1.1 CrossRefGoogle Scholar
  28. Kalueff AV, Cachat, JM (eds) (2011) Zebrafish models in neurobehavioral research. Springer Protocols, Humana Press Inc.Google Scholar
  29. Kaviani EF, Shabanipour N, Mirnategh SB (2013) Light and electron microscope structural study of the zona radiata in the oocyte of zebrafish (Danio rerio). Microscopy (Oxford) 62(3):377–382. https://doi.org/10.1093/jmicro/dfs086 CrossRefGoogle Scholar
  30. Kriwet J, Hecht T (2008) A review early gadiform evolution and diversification: first record of a rattail fish skull (Gadidormes, Marcrouridae) from the Eocene of Antarctica, with otoliths preserved in situ. Naturwissenschaften 95(10):899–907. https://doi.org/10.1007/s00114-008-0409-5 CrossRefPubMedGoogle Scholar
  31. Kroll W (1984) Morphological and behavioral embryology and spontaneous diapauses in the African killifish, Aphyosemion gardneri. Environ Biol Fish 11(1):21–28. https://doi.org/10.1007/BF00001842 CrossRefGoogle Scholar
  32. Kunz WY (2014) Developmental biology of teleost fishes. SpringerGoogle Scholar
  33. Levels PJ, Gubbels RE, Denucé JM (1986) Oxygen consumption during embryonic development of the annual fish Nothobranchius korthausae with special reference to diapause. Comp Biochem Physiol A Physiol 84(4):767–770. https://doi.org/10.1016/0300-9629(86)90403-2 CrossRefGoogle Scholar
  34. Lönning S (1972) Comparative electron microscopic studies of teleostean eggs with special reference to the chorion. Sarsia 49(1):41–48. https://doi.org/10.1080/00364827.1972.10411206 CrossRefGoogle Scholar
  35. Losos JB (2011) Convergence, adaptation, and constraint. Evolution 65(7):1827–1840. https://doi.org/10.1111/j.1558-5646.2011.01289 CrossRefPubMedGoogle Scholar
  36. Loureiro M, de Sa RO (1996) External morphology of the chorion of the annual fishes Cynolebias (Cyprinodontiformes: Rivulinae). Copeia 1996(4):1016–1022. https://doi.org/10.2307/1447669 CrossRefGoogle Scholar
  37. Markofsky J, Matias JR (1977) The effects of temperature and season of collection on the onset and duration of diapause in embryos of the annual fish Nothobranchius guentheri. J Exp Zool 202(1):49–56. https://doi.org/10.1002/jez.1402020107 CrossRefPubMedGoogle Scholar
  38. Matias JR (1982) Embryonic diapauses in annual fishes: evaporative water loss and survival. Exp Dermatol 38:1315–1317Google Scholar
  39. Matias JR (1984) The stage-dependent resistance of the chorion to external chemical damage and its relationship to embryonic diapause in the annual fish, Nothobranchius guentheri. Exp Dermatol 40:753–754Google Scholar
  40. Menkovic D (2014) Ist es, was es ist? Artbestimmung anhand des Eioberflächenstruktur. Deutsche Killifisch Gemeinschaft Journal 46:1–11Google Scholar
  41. Moen DS, Morlon H, Wiens JJ (2016) Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst Biol 5(1):146–160. https://doi.org/10.1093/sysbio/syv073 CrossRefGoogle Scholar
  42. Murphy WJ, Collier GE (1997) A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. Mol Biol Evol 14(8):790–799. https://doi.org/10.1093/oxfordjournals.molbev.a025819 CrossRefPubMedGoogle Scholar
  43. Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, Moore JA, Price SA, Burbrink FT, Friedman M, Wainwright PC (2013) Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad Sci U S A 110(31):12738–12743. https://doi.org/10.1073/pnas.1304661110 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Parenti LR (1981) A phylogenetic and biogeographic analysis of Cyprinodontiform fishes (Teleostei, Atherinomorpha). Bull Amer Mus Nat Hist 168:341–557Google Scholar
  45. Park JY, Kim IS (2003) Variability of egg envelopes in Korean spined loaches (Cobitidae). Folia Biol (Krakow) 51 Suppl:187–192
  46. Peters N (1963) Embryonale Anpassungen oviparer Zahnkarpfen aus periodisch austrocknenden Gewässern. Internationale Revue der gesamten Hydrobiologie und Hydrographie 48(2):257–313. https://doi.org/10.1002/iroh.19630480204 CrossRefGoogle Scholar
  47. Podrabsky JE, Hand SC (1999) The bioenergetics of embryonic diapause in an annual killifish, Austrofundulus limnaeus. J Exp Biol 202:2567–2580PubMedGoogle Scholar
  48. Podrabsky JE, Carpenter JF, Hand SC (2001) Survival of water stress in annual fish embryos: dehydration avoidance and egg envelope amyloid fibers. Am J Physiol Regul Integr Comp Physiol 280:R123–R131PubMedGoogle Scholar
  49. Podrabsky JE, Garrett IDF, Kohl ZF (2010) Alternative developmental pathways associated with diapause regulated by temperature and maternal influences in embryos of the annual killifish Austrofundulus limnaeus. J Exp Biol 213(19):3280–3288. https://doi.org/10.1242/jeb.045906 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Polačik M, Reichard M (2011) Asymmetric reproductive isolation between two sympatric annual killifish with extremely short life spans. PLoS One 6(8):e22684. https://doi.org/10.1371/journal.pone.0022684 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Polačik M, Blazek R, Rezucha R, Vrtilek M, Terzibasi Tozzini E, Reichard M (2014) Alternative intrapopulation life-history strategies and their trade-offs in an African annual fish. J Evol Biol 27(5):854–865. https://doi.org/10.1111/jeb.12359 CrossRefPubMedGoogle Scholar
  52. Robertson DA (1981) Possible functions of surface structure and size in some planktonic eggs of marine fishes. N Z J Mar Freshw Res 15(2):147–153. https://doi.org/10.1080/00288330.1981.9515907 CrossRefGoogle Scholar
  53. Rodao M, Montagne J, Clivio GA, Papa NG, Larrosa GC (2016) Sperm and egg envelope ultrastructure and some considerations on its evolutionary meaning. In: Berois N, Garcia G, de Sa RO (ed) Annual fishes life history strategy, diversity, and evolution. CRC PressGoogle Scholar
  54. Romand R, Broche J (1983) Annual changes in the ecotope of a Cyprinodontidae fish from West Africa. Revue Zool Bot Afr 97:867–877Google Scholar
  55. Saunders DS, Steel CGH, Vafopoulou X, Lewis RD (2002) Chapter 9, Photoperiodism and seasonal cycle of development in Insect clocks, Amsterdam Elsevier, pp. 271–298Google Scholar
  56. Schell JJ (1975) Rivulins of the old world. TFH publications, Neptune CityGoogle Scholar
  57. Schlichting CD, Wund MA (2014) Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 68:656–672. https://doi.org/10.1111/evo.12348 CrossRefPubMedGoogle Scholar
  58. Schluter D, Nagel LM (1995) Parallel speciation by natural selection. Am Nat 146(2):292–301. https://doi.org/10.1086/285799 CrossRefGoogle Scholar
  59. Selman K, Wallace RA, Sarka A, Qi W (1993) Stages of oocyte development in the zebrafish, Brachydanio rerio. J Morphol 218(2):203–224. https://doi.org/10.1002/jmor.1052180209 CrossRefGoogle Scholar
  60. Spence R, Gerlach G, Lawrence C, Smith C (2008) The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83(1):13–34. https://doi.org/10.1111/j.1469-185X.2007.00030.x CrossRefPubMedGoogle Scholar
  61. Stehr C, Hawkes J (1979) The comparative ultrastructure of the egg membrane and associated pore structures in the starry flounder, Platichthyes stellatus (Pallas) and pink salmon, Oncorhynchus gorbuscha (Walbaum). Cell Tissue Res 202(3):347–356CrossRefPubMedGoogle Scholar
  62. Thomson AW, Furness AI, Stone C, Rade CM, Orti G (2017) Microanatomical diversification of the zona pellucida in aplochelioid killifishes. J Fish Biol 91(126):–143. https://doi.org/10.1111/jfb.13332
  63. Ulrich E (1969) Etude des ultrastructures au cours de l’ovogenèse d’un poisson téléostéen, le Danio, Brachydanio rerio (Hamilton-Buchanan). J. Microscopy 8:447–478Google Scholar
  64. Wildekamp RH (2004) A world of Killies: atlas of the oviparous Cyprinidontiform fishes of the world. Volume IV, American Killifish AssociationGoogle Scholar
  65. Wourms JP (1972a) The developmental biology of annual fishes. I. Stages in the normal development of Austrofundulus myersi dahl. J Exp Zool 182(2):143–168. https://doi.org/10.1002/jez.1401820202 CrossRefPubMedGoogle Scholar
  66. Wourms JP (1972b) The development biology of annual fishes III. Pre-embryonic and embryonic diapause of variable duration in the eggs of annual fishes. J Exp Zool 182(3):389–414. https://doi.org/10.1002/jez.1401820310 CrossRefPubMedGoogle Scholar
  67. Wourms JP (1976) Annual fish oogenesis. I. Differentiation of the mature oocyte and formation of the primary envelope. Dev Biol 50(2):338–354. https://doi.org/10.1016/0012-1606(76)90156-1 CrossRefPubMedGoogle Scholar
  68. Wourms JP, Sheldon H (1976) Annual fish oogenesis; II. Formation of the secondary egg envelope. Dev Biol 50(2):355–366. https://doi.org/10.1016/0012-1606(76)90157-3 CrossRefPubMedGoogle Scholar
  69. Yamamoto M, Yamagami K (1975) Electron microscopic studies on choriolysis by hatching enzyme of the teleost, Oryzias laptipes. Dev Biol 43(2):313–321. https://doi.org/10.1016/0012-1606(75)90030-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.IGBMCINSERM U964IllkirchFrance
  2. 2.Faculté de MédecineICube-CNRS UMR7357Strasbourg CedexFrance

Personalised recommendations