Genetic diversification and population structure of Barbus cyri De Filippi, 1865 (Teleostei: Cyprinidae) in northern Iran inferred from the mitochondrial D-loop gene sequence

  • Roozbehan Khaefi
  • Haimd Reza Esmaeili
  • Mina Hojat Ansari
  • Mehrgan Ebrahimi
Article

Abstract

A genetic survey of Barbus cyri populations from two biogeographical endorheic basins (Caspian Sea and Urmia Lake) was carried out using a mitochondrial marker (partial D-loop) in order to ascertain intra- and inter-population genetic diversity, population demography and to address their genetic structure which is the key to conservation action planning. Analyses were conducted on sequences obtained from 68 individuals collected from 10 sampling sites, from two basins. By means of morphological characteristics all specimens collected from the Caspian Sea basin were ascribed to Barbus cyri. Genetic diversity values (h and π) of sampling groups were all different from 0 (in Babolrud River population) to 0.857 (in Kalibar River population). Population connectivity and colonization patterns of the studied area were inferred from an analysis of molecular variance distribution and evolutionary relationships among haplotypes. The results point to different levels of isolation among sampling groups due to ecological and anthropogenic factors and the effect of an artificial barrier on genetic variability and conservation status of the population. Finally, this study confirms the uncertainty associated with systematic classification of Barbus spp. based on morphological characters due to the phenotypic plasticity of the species.

Keywords

Mitochondrial markers Genetic diversity Evolutionary relationships D-loop 

References

  1. Allen MB, Vincent SJ, Alsop GI, Ismail-zadeh A, Flecker R (2003) Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics 366(3):223–239CrossRefGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University press, p 464Google Scholar
  3. Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the southern hemisphere. Mol Ecol 17:3754–3774PubMedGoogle Scholar
  4. Briggs JC (2000) Centrifugal speciation and centres of origin. J Biogeogr 27(5):1183–1188CrossRefGoogle Scholar
  5. Cecconi F, Giorgi M, Mariottini P (1995) Unique features in the mitochondrial D-loop region of the European seabass Dicentrarchus labrax. Gene 160(2):149–155CrossRefPubMedGoogle Scholar
  6. Choleva L, Musilova Z, Kohoutova-Sediva A, Paces J, Rab P et al (2014) Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids. PLoS One 9(6):e80641. https://doi.org/10.1371/journal.pone.0080641 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Coad BW (2017) Freshwater fishes of Iran, personal website. www.briancoad.com. accessible on 26. April. 2017
  8. Darvishzadeh A (2007) Geology of Iran. Amir-Kabir Publications, TehranGoogle Scholar
  9. Esmaeili HR, Coad BW, Mehraban HR, Masoudi M, Khaefi R, Abbasi K, Mostafavi H, Vatandoust S (2014) An updated checklist of fishes of the Caspian Sea basin of Iran with a note on their zoogeography. Iran J Ichthyol 1(3):152–184Google Scholar
  10. Esmaeili HR, Mehraban H, Abbasi K, Keivany Y, Coad B (2017) Review and updated checklist of freshwater fishes of Iran: taxonomy, distribution and conservation status. Iran J Ichthyol 4(Suppl. 1):1–114Google Scholar
  11. Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  12. Ferrito V, Pappalardo AM, Canapa A, Barucca M, Doadrio I, Olmo E, Tigano C (2013) Mitochondrial phylogeography of the killifish Aphanius fasciatus (Teleostei, Cyprinodontidae) reveals highly divergent Mediterranean populations. Mar Biol 160(12):3193–3208CrossRefGoogle Scholar
  13. Freyhof J, Esmaeili HR, Sayyadzadeh G, Geiger M (2014) Review of the crested loaches of the genus Paracobitis from Iran and Iraq with the description of four new species (Teleostei: Nemacheilidae). Ichthyol Explor Freshw 25(1):11–38Google Scholar
  14. Gonzalez EG, Pedraza-Lara C, Doadrio I (2014) Genetic diversity and population history of the Endangered Killifish Aphanius baeticus. J Hered. 2014 Jun 17:esu034. Doi: https://doi.org/10.1093/jhered/esu034
  15. Gorbatenky GG, Byzgu SE, Kunichan LA (1986) Mineralization and ionic content of the Dniester water and prediction of changes in human impact. In modern state ecosystems of the Dniester River and reservoirs. Kishinev, KodruGoogle Scholar
  16. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  17. Iguchi M, Okita K, Nakatani T, Kasai N (1997) Structure of turbulent round bubbling jet generated by premixed gas and liquid injection. Int J Multiphase Flow 23(2):249–262CrossRefGoogle Scholar
  18. Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the south Caspian basin. Geophys J Int 148(2):214–245Google Scholar
  19. Khaefi R, Vatandoust S, Esmaeili HR (2017) Re-description of Barbus miliaris de Filippi, 1863 (Teleostei: Cyprinidae) from the endorheic Namak Lake basin of Iran. FishTaxa 2(1):33–42Google Scholar
  20. Kotlik P, Bogutskaya NG, Ekmekci FG (2004) Circum Black Sea phylogeography of Barbus freshwater fishes: divergence in the Pontic glacial refugium. Mol Ecol 13(2004):87–95CrossRefPubMedGoogle Scholar
  21. Kotlik P, Marková S, Choleva L, Bogutskaya NG, Ekmekçi FG, Ivanova PP (2008) Divergence with gene flow between Ponto-Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography. Mol Ecol 17(4):1076–1088CrossRefPubMedGoogle Scholar
  22. Kuksa VI (1994) Southern seas: the Aral, Caspian, Azov and black in conditions of anthropogenic stress. Gidrometeoizdat, Sankt-Peterburg, p 319Google Scholar
  23. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefPubMedGoogle Scholar
  24. Li WH (1997) Molecular Evolution. Sinauer, Sunderlan, MassGoogle Scholar
  25. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  26. Liu H, Chen Y (2003) Phylogeny of the east Asian cyprinids inferred from sequences of the mitochondrial DNA control region. Can J Zool 81:1938–1946CrossRefGoogle Scholar
  27. Lopes-Cunha M, Aboim MA, Mesquita N, Alves MJ, Doadrio I, Coelho MM (2012) Population genetic structure in the Iberian cyprinid fish Iberochondrostoma lemmingii (Steindachner, 1866): disentangling species fragmentation and colonization processes. Biol J Linn Soc 105(3):559–572CrossRefGoogle Scholar
  28. Lukyanenko VI (2002) Destruction threat of the Caspian sturgeons and urgent measures in their rescuing. Utilization and Protection of Natural Resources in Russia Bulletin No 5–6Google Scholar
  29. MacManes M (2013) MacManes Salt Extraction Protocol. figshareGoogle Scholar
  30. Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, Perez KE, Stam W, Vainola R, Viard F, Wares J (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89(Supplement):S108–S122CrossRefPubMedGoogle Scholar
  31. Martinez-Bouzas C, Castro A, Fernandez-Fernandez I, Rodriguez-Filgueira JL, de Pancorbo MM (2003) Genetic structure of autochthonous Basques through analysis of the HVI and HVII regions of mitochondrial DNA. International Congress S 1239:495–499Google Scholar
  32. Miller MP (1997) Tools for population genetic analyses (TFPGA) 1.3. A window program for the analysis of allozyme and molecular population genetic data. Computer software distributed by authorGoogle Scholar
  33. Motamedi M, Madjdzadeh SM, Teimori A, Esmaeili HR, Mohsenzadeh S (2014) Morphological and molecular perspective on geographical differentiation of Barbus populations (Actinopterygii; Cyprinidae) within Iranian freshwater drainages. Turk J Fish Aquat Sc 14(2):339–351Google Scholar
  34. Naseka AM (2010) Zoogeographical freshwater divisions of the Caucasus as a part of the west Asian transitional region. Proceedings of the zoological institute, Russian. Acad Sci 314(4):469–492Google Scholar
  35. Nei M, Kumar S (2000) Molecular evolution and Phylogenetics. Oxford University Press, New YorkGoogle Scholar
  36. Olden JD (2016) Challenges and opportunities for fish conservation in dam-impacted waters. In: Closs GP, Krkosek M, Olden JD (eds) Conservation of freshwater fishes. Cambridge University Press, Cambridge, pp 107–142CrossRefGoogle Scholar
  37. Ovenden L (1990) Peat accumulation in northern wetlands. Quat Res 33:377–386CrossRefGoogle Scholar
  38. Peng Z, He S, Zhang Y (2004) Phylogenetic relationship of glyptosternoid fishes (Siluriformes: Sisoridae) inferred from mitochondrial cytochrome b gene sequence. Mol Phylogenet Evol 31:979–987CrossRefPubMedGoogle Scholar
  39. Perea S, Böhme M, Zupančič P, Freyhof J, Šanda R, Özuluğ M, Abdoli A, Doadrio I (2010) Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both miotochondrial and nuclear data. BMC Evol Biol 10:265CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rambaut A, Drummond A (2009) Tracer, version 1.4. Computer program and documentation distributed by the author, website http://beast.bio.ed.ac.uk/Tracer
  41. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth 111(B05411):1–26. https://doi.org/10.1029/2005JB004051
  42. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  43. Saadati MAG (1977) Taxonomy and distribution of the freshwater fishes of Iran. M.S. Thesis, Colorado State University, Fort Collins. xiii + 212 ppGoogle Scholar
  44. Saifali M, Arshad A, Yazdani Moghaddam F, Esmaeili HR, Hasanzadeh Kiabi B, Duad SK, Aliabadian M (2012) Molecular genetic differences of spirlin (Actinopterygii: Cyprinidae) in the Caspian Sea basin of Iran. Evol Bioinforma 8:219–227CrossRefGoogle Scholar
  45. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337CrossRefGoogle Scholar
  46. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129(2):555–562PubMedPubMedCentralGoogle Scholar
  47. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  49. Teimori A, Mostafavi H, Esmaeili HR (2016) An update note on diversity and conservation of the endemic fishes in Iranian inland waters. Turk J Zool 40(1):87–102CrossRefGoogle Scholar
  50. Templeton AR (2008) Gene flow, haplotype patterns and modern human origins. In:eLS. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  51. Wang M, Yang JX, Chen XY (2013) Molecular phylogeny and biogeography of Percocypris (Cyprinidae, Teleostei). PLoS One 8(6):e61827CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wu X, Luo J, Huang S, Chen Z, Xiao H, Zhang Y et al (2013) Molecular Phylogeography and evolutionary history of Poropuntius huangchuchieni (Cyprinidae) in Southwest China. PLoS One 8(11):e79975. https://doi.org/10.1371/journal.pone.0079975 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Xian Liu J, Gao T, Yokogawa K, Zhang Y (2006) Differential population structure and demographic history of two closely related and species, Japanese seabass (Lateolabrax japonicas) in the northwestern Pacific. Mol Phylogenet Evol 39:799–811CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Ichthyology and Molecular Systematics Lab., Zoology Section, Department of Biology, College of SciencesShiraz UniversityShirazIran
  2. 2.Department of Earth and Environmental SciencesPalaeontology & GeobiologyMunichGermany
  3. 3.Gastroenterohepatology Research CenterShiraz University of Medical SciencesShirazIran
  4. 4.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations