Organic matter sources for fish larvae and juveniles in a marine-estuarine interface (Mar Chiquita lagoon, Argentina)

Abstract

The aim of this study was to analyze the organic matter (OM) origin in the nearshore and the surf zones adjacent to Mar Chiquita lagoon, in order to determine the importance of allochthonous estuarine detritus and in situ marine phytoplankton as carbon (C) sources for young fishes prior to entering the lagoon. Water samples from both the nearshore and the surf zones were collected for estimation of Chlorophyll a concentration, and δ13C and δ15N values of the particulate organic matter (POM). Isotopic composition of the zooplankton and fish larvae from both zones and fish juveniles from the surf zone were also estimated. The contribution of potential OM sources was quantified by Bayesian stable isotope mixing models (SIAR). SIAR models revealed that the POM composition in the coastal area close to Mar Chiquita lagoon comprised a mix of primary producers (terrestrial and marine). The cordgrass Spartina densiflora that develops in the saltmarshes bounding the lagoon, contributed most to the POM of the surf zone, being important as a C source for zooplankton from the same zone. Towards deeper waters (10–12 m, ~2.5 km offshore) with higher chlorophyll a concentrations, phytoplankton contributed most to the POM. Spartina densiflora was not relevant as a C source for larval and juvenile fishes. However, it was of importance to the group of primary consumers, which apparently sustain other zooplankton organisms that fish fed on. In this sense, the OM derived from S. densiflora and exported to the coastal area contributes to sustaining the prey for young fishes outside Mar Chiquita.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bergamino L, Lercari D, Defeo O (2011) Food web structure of sandy beaches: temporal and spatial variation using stable isotope analysis. Estuar Coast Shelf Sci 91:536–543. https://doi.org/10.1016/j.ecss.2010.12.007

    CAS  Article  Google Scholar 

  2. Bertola GR (2006) Morfodinamica de playas del sudeste de la provincia de Buenos Aires (1983 a 2004). Lat Am J Sedimentol Basin Anal 13:31–57

    Google Scholar 

  3. Botto F, Iribarne O (1999) Effect of the burrowing crab Chasmagnathus granulata (Dana) on the benthic community of a SW Atlantic coastal lagoon. J Exp Mar Biol Ecol 241:263–284. https://doi.org/10.1016/S0022-0981(99)00089-1

    Article  Google Scholar 

  4. Botto F, Iribarne O (2000) Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments. Estuar Coast Shelf Sci 51:141–151. https://doi.org/10.1006/ecss.2000.0642

    CAS  Article  Google Scholar 

  5. Botto F, Iribarne OO, Martínez MM, Delhey K, Carrete M (1998) The effect of migratory shorebirds on the benthic species of three southwestern Atlantic Argentinean estuaries. Estuaries 21:700. https://doi.org/10.2307/1353274

    Article  Google Scholar 

  6. Botto F, Valiela I, Iribarne O, Martinetto P, Alberti J (2005) Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Mar Ecol Prog Ser 293:155–164. https://doi.org/10.3354/meps293155

    Article  Google Scholar 

  7. Botto F, Iribarne O, Gutierrez J, Bava J, Gagliardini A, Valiela I (2006) Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab Chasmagnathus granulatus. Mar Ecol Prog Ser 312:201–210. https://doi.org/10.3354/meps312201

    Article  Google Scholar 

  8. Botto F, Gaitán E, Mianzan H, Acha M, Giberto D, Schiariti A, Iribarne O (2011) Origin of resources and trophic pathways in a large SW Atlantic estuary: an evaluation using stable isotopes. Estuar Coast Shelf Sci 92:70–77. https://doi.org/10.1016/j.ecss.2010.12.014

    Article  Google Scholar 

  9. Bruno DO, Acha EM (2015) Winds vs. tides: factors ruling the recruitment of larval and juvenile fishes into a micro-tidal and shallow choked lagoon (Argentina). Environ Biol Fish 98:1449–1458. https://doi.org/10.1007/s10641-014-0371-3

    Article  Google Scholar 

  10. Bruno DO, Delpiani SM, Cousseau MB, Díaz de Astarloa JM, Blasina GE, Mabragaña E, Acha EM (2014) Ocean-estuarine connection for ichthyoplankton through the inlet channel of a temperate choked coastal lagoon (Argentina). Mar Freshw Res 65:1116–1130. https://doi.org/10.1071/MF13128

    Article  Google Scholar 

  11. Bruno DO, Cousseau MB, Díaz de Astarloa JM, Acha EM (2015) Recruitment of juvenile fishes into a small temperate choked lagoon ( Argentina ) and the influence of environmental factors during the process. Sci Mar 79:1–13

    Article  Google Scholar 

  12. Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications studies using multiple stable isotopes. Limnol Oceanogr 40(3):622–625

    CAS  Article  Google Scholar 

  13. Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci U S A 93:10844–10847. https://doi.org/10.1073/pnas.93.20.10844

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Canino MF, Grant GC (1985) The feeding and diet of Sagitta tenuis (Chaetognatha) in the lower Chesapeake Bay. J Plankton Res 7:175–188. https://doi.org/10.1093/plankt/7.2.175

    Article  Google Scholar 

  15. Carabel S, Godínez-Domínguez E, Verísimo P, Fernández L, Freire J (2006) An assessment of sample processing methods for stable isotope analyses of marine food webs. J Exp Mar Biol Ecol 336(2):254–261

    CAS  Article  Google Scholar 

  16. Créach V, Schricke MT, Bertru G, Mariotti A (1997) Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers. Estuar Coast Shelf Sci 44:599–611. https://doi.org/10.1006/ecss.1996.0147

    Article  Google Scholar 

  17. Currin CA, Newell SY, Paerl HW (1995) The role of standing dead Spartina alterniflora and benthic microalgae in salt-marsh food webs - considerations based on multiple stable-isotope analysis. Mar Ecol Ser 121:99–116. https://doi.org/10.3354/meps121099

    Article  Google Scholar 

  18. Cury P, Shannon L, Shin YJ (2003) The functioning of marine ecosystems: a fisheries perspective. In: Sinclair M, Valdimarson G (eds) Responsible Fisheries in the Marine Ecosystem. FAO Fisheries Technical Paper N°400. pp 103–123

  19. Cushing H, Horwood JW (1994) The growth and death of fish larvae. J Plankton Res 16(3):291–300

    Article  Google Scholar 

  20. Dame RF, Allen DM (1996) Between estuaries and the sea. J Exp Mar Biol Ecol 200:169–185. https://doi.org/10.1016/S0022-0981(96)02642-1

    Article  Google Scholar 

  21. Deegan LA, Garritt RH (1997) Evidence for spatial variability in estuarine food webs. Mar Ecol Prog Ser 147:31–47. https://doi.org/10.3354/meps147031

    Article  Google Scholar 

  22. Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar Ecol Prog Ser 295:1–20. https://doi.org/10.3354/meps295001

    Article  Google Scholar 

  23. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Ac 42(5):495–506

    CAS  Article  Google Scholar 

  24. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Ac 45(3):341–351

    CAS  Article  Google Scholar 

  25. Derisio C, Braverman M, Gaitán E, Hozbor C, Ramírez F, Carreto J, Mianzan H (2014) The turbidity front as a habitat for Acartia tonsa (Copepoda) in the Río de la Plata, Argentina-Uruguay. J Sea Res 85:197–204

    Article  Google Scholar 

  26. Duffy JE, Hay ME (2000) Strong impacts of grazing amphipods on the organization of a benthic community. Ecol Monogr 70:237–263. https://doi.org/10.1890/0012-9615(2000)070[0237:SIOGAO]2.0.CO;2

    Article  Google Scholar 

  27. Fanjul E, Escapa M, Montemayor D, Addino M, Alvarez MF, Grela MA, Iribarne O (2015) Effect of crab bioturbation on organic matter processing in south West Atlantic intertidal sediments. J Sea Res 95:206–216. https://doi.org/10.1016/j.seares.2014.05.005

    Article  Google Scholar 

  28. France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312. https://doi.org/10.3354/meps124307

    Article  Google Scholar 

  29. Fry B, Sherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:13–47

    CAS  Google Scholar 

  30. Fuiman LA (2002) Chapter 1: special considerations of fish eggs and larvae. In: Fuiman LA, Werner RG (eds) Fishery science: the unique contributions of early life stages. Blackwell Science, Oxford, pp 1–32

    Google Scholar 

  31. Garcia AM, Hoeinghaus DJ, Vieira JP, Winemiller KO (2007) Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuar Coast Shelf Sci 73:399–408. https://doi.org/10.1016/j.ecss.2007.02.003

    Article  Google Scholar 

  32. Grey J, Jones RI, Sleep D (2001) Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in loch ness, as indicated by stable isotope analysis. Limnol Oceanogr 46(3):505–513

    Article  Google Scholar 

  33. Holland MM (1988) SCOPE/MAB technical consultations on landscape boundaries: report of a SCOPE/MAB workshop on ecotones. Biol Inter Special Issue 17:47–106

    Google Scholar 

  34. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. J du … 30:3–15. doi: https://doi.org/10.1093/icesjms/30.1.3

  35. Houde ED (2002) Chapter 3: mortality. In: Fuiman LA, Werner RG (eds) Fishery science: the unique contributions of early life stages. Blackwell Science, Oxford, pp 64–87

    Google Scholar 

  36. Howe ER, Simenstad CA (2015) Using stable isotopes to discern mechanisms of connectivity in estuarine detritus-based food webs. Mar Ecol Prog Ser 518:13–29. https://doi.org/10.3354/meps11066

    Article  Google Scholar 

  37. Iribarne O, Bortolus A, Botto F (1997) Between-habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:137–145. https://doi.org/10.3354/meps155137

    Article  Google Scholar 

  38. Isacch JP, Costa CSB, Rodríguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900. https://doi.org/10.1111/j.1365-2699.2006.01461.x

    Article  Google Scholar 

  39. Jansson BO (1988) Coastal-offshore ecosystem interactions. Springer-Verlag, New York

    Google Scholar 

  40. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchments hydrology. Elsevier Science, Amsterdam, pp 519–575

    Google Scholar 

  41. Kendall C, Silva SR, Kelly VJ (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrol Process 15:1301–1346. https://doi.org/10.1002/hyp.216

    Article  Google Scholar 

  42. Kjerfve B (1994) Coastal lagoons. Elsevier Oceanogr Ser 60:1–8

    Article  Google Scholar 

  43. Kjerfve B, Magill KE (1989) Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar Geol 88:187–199. https://doi.org/10.1016/0025-3227(89)90097-2

    Article  Google Scholar 

  44. Kneib RT (2002) Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publisher, New York, pp 267–291

    Google Scholar 

  45. Lajtha K, Michener R (1994) Introduction. In: Lajtha K, Michener R (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publishers, Oxford, pp XI–XIX

    Google Scholar 

  46. Leite RG, Araújo-Lima C, Vitória R, Martinelli L (2002) Stable isotope analysis of energy sources for larvae of eight fish species from the Amazon floodplain. Ecol Freshw Fish 11:56–63. https://doi.org/10.1034/j.1600-0633.2002.110106.x

    Article  Google Scholar 

  47. Lucas AJ, Guerrero RA, Mianzán HW et al (2005) Coastal oceanographic regimes of the northern argentine continental shelf (34-43°S). Estuar Coast Shelf Sci 65:405–420. https://doi.org/10.1016/j.ecss.2005.06.015

    Article  Google Scholar 

  48. Mancinelli G (2012) On the trophic ecology of Gammaridea (Crustacea: Amphipoda) in coastal waters: a European-scale analysis of stable isotopes data. Estuar Coast Shelf Sci 114:130–139. https://doi.org/10.1016/j.ecss.2011.12.003

    CAS  Article  Google Scholar 

  49. Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal rnarine ecosystems. Limnol Oceanogr 33:9–930. https://doi.org/10.4319/lo.1988.33.4_part_2.0910

    Google Scholar 

  50. Martinetto P, Iribarne O, Palomo G (2005) Effect of fish predation on intertidal benthic fauna is modified by crab bioturbation. J Exp Mar Biol Ecol 318:71–84. https://doi.org/10.1016/j.jembe.2004.12.009

    Article  Google Scholar 

  51. Martinetto P, Ribeiro P, Iribarne O (2007) Changes in distribution and abundance of juvenile fishes in intertidal soft sediment areas dominated by the burrowing crab Chasmagnathus granulatus. Mar Freshw Res 58:194–203. https://doi.org/10.1071/MF06079

    Article  Google Scholar 

  52. McLachlan A, Brown AC (2006) The ecology of Sandy shores. Academic Press, USA, Burlington

    Google Scholar 

  53. Merlotto A, Bertola GR (2009) Coastline evolution at Balneario Parque Mar Chiquita, Argentina. Ciencias Mar 35:271–286

    Article  Google Scholar 

  54. Michener RH, Schell DM (1994) Stable isotopes ratios as tracers in marine aquatic food webs. In: Lajtha K, Michener RM (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publishers, Oxford, pp 138–157

    Google Scholar 

  55. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7

    CAS  Article  Google Scholar 

  56. Montoya JP (2007) Natural abundance of 15N in marine planktonic ecosystems. In: Michener RM, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing Ltd, Oxford, pp 176–201

  57. Palomo G, Botto F, Navarro D, Escapa M, Iribarne O (2003) Does the presence of the SW Atlantic burrowing crab Chasmagnathus granulatus Dana affect predator-prey interactions between shorebirds and polychaetes? J Exp Mar Biol Ecol 290(2):211–228

    Article  Google Scholar 

  58. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5(3):e9672

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pasquaud S, Pillet M, David V, Sautour B, Elie P (2010) Determination of fish trophic levels in an estuarine system. Estuar Coast Shelf Sci 86:237–246. https://doi.org/10.1016/j.ecss.2009.11.019

    CAS  Article  Google Scholar 

  60. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  61. Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13(2):225–231

    Article  Google Scholar 

  62. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology:the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. https://doi.org/10.1146/annurev.ecolsys.28.1.289

    Article  Google Scholar 

  63. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. https://doi.org/10.2307/3071875

    Article  Google Scholar 

  64. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing (Version 3.2.2). http://www.R-project.org/

  65. Reta R, Martos P, Perillo GME, Piccolo MC, Ferrante A (2001) Características hidrográficas del estuario de la laguna Mar Chiquita. In: Iribarne O (ed) Reserva de Biósfera Mar Chiquita: Características físicas, biológicas y ecológicas. Editorial Martín, Mar del Plata, pp 31–52

    Google Scholar 

  66. Russo T, Costa C, Cataudella S (2007) Correspondence between shape and feeding habit changes throughout ontogeny of gilthead sea bream Sparus aurata L., 1758. J Fish Biol 71(3):629–656

    Article  Google Scholar 

  67. Sato NE, Hernández D, Viñas MD (2011) Hábitos alimentarios de Sagitta friderici Ritter-Zahony en las aguas costeras de la provincia de Buenos Aires, Argentina. Bol Invest Mar Cost 40(1):59–74

    Google Scholar 

  68. Sullivan M, Moncreiff C (1990) Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Mar Ecol Prog Ser 62:149–159. https://doi.org/10.3354/meps062149

    Article  Google Scholar 

  69. Underwood AJ (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, UK

    Google Scholar 

  70. UNESCO (1996) Nine new biosphere reserves designated by the MAB bureau. Biosphere Reserves: Bull World Network 4:6–10

    Google Scholar 

  71. Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can J Fish Aquat Sci 54:1142–1158. https://doi.org/10.1139/f97-016

    Article  Google Scholar 

  72. Vinagre C, Salgado J, Cabral HN, Costa MJ (2011) Food web structure and habitat connectivity in fish estuarine nurseries-impact of river flow. Estuar Coasts 34:663–674. https://doi.org/10.1007/s12237-010-9315-0

    Article  Google Scholar 

  73. Vizzini S, Mazzola A (2006) Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: evidence for spatial variability. Estuar Coast Shelf Sci 66(3):459–467

    Article  Google Scholar 

  74. Wells RJD, Cowan JH, Fry B (2008) Feeding ecology of red snapper Lutjanus campechanus in the northern Gulf of Mexico. Mar Ecol Prog Ser 361:213–225

    Article  Google Scholar 

  75. Whitfield AK (1994) Abundance of larval and O+ juvenile marine fishes in the lower reaches of 3 southern African estuaries with differing freshwater inputs. Mar Ecol Prog Ser 105:257–268. https://doi.org/10.3354/meps105257

    Article  Google Scholar 

  76. Winemiller KO, Akin S, Zeug SC (2007) Production sources and food web structure of a temperate tidal estuary: integration of dietary and stable isotope data. Mar Ecol Prog Ser 343:63–76. https://doi.org/10.3354/meps06884

    CAS  Article  Google Scholar 

  77. Wissel B, Gaçe A, Fry B (2005) Tracing river influences on phytoplankton dynamics in two Louisiana estuaries. Ecology 86:2751–2762. https://doi.org/10.1890/04-1714

    Article  Google Scholar 

  78. Zar JH (2010) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

We are deeply grateful to J.M. Díaz de Astarloa and E. Mabragaña (BIMOPE, UNMdP, Argentina) for partially supporting the sampling; to Buenos Aires Province Ministry of Agrarian Subjects’ authorities, M. Iza and J. Mangiarotti (forest guard of Mar Chiquita Biosphere Reserve) for sampling permission; to S.M. Delpiani, C. Rumbold, A. Martínez, J.J. Rosso, D. Castellini and N. Lajud for field assistance; to D.A. Cucchi-Colleoni for chlorophyll a analysis, and to G.I. Álvarez, E. Fanjul and E.N. Gaitán for laboratory assistance. We thank the staff of the UC Davis Stable Isotope Facility for invaluable sample processing services and acknowledge the useful suggestions made by D.L.G. Noakes and two anonymous reviewers on an early draft. This study was supported by grant EXA 647/14 to E.M. Acha, and CONICET PIP 112-200901-00942 to J.M. Díaz de Astarloa and E. Mabragaña. D.O.B. was supported by fellowships from CONICET (Argentina). This is part of D.O.B’s Ph.D. thesis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel O. Bruno.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bruno, D.O., Riccialdelli, L., Botto, F. et al. Organic matter sources for fish larvae and juveniles in a marine-estuarine interface (Mar Chiquita lagoon, Argentina). Environ Biol Fish 100, 1609–1622 (2017). https://doi.org/10.1007/s10641-017-0669-z

Download citation

Keywords

  • Young fishes
  • Organic matter
  • Estuarine environment
  • Stable isotopes
  • SIAR model