Advertisement

Environmental Biology of Fishes

, Volume 100, Issue 12, pp 1609–1622 | Cite as

Organic matter sources for fish larvae and juveniles in a marine-estuarine interface (Mar Chiquita lagoon, Argentina)

  • Daniel O. Bruno
  • Luciana Riccialdelli
  • Florencia Botto
  • Eduardo M. Acha
Article

Abstract

The aim of this study was to analyze the organic matter (OM) origin in the nearshore and the surf zones adjacent to Mar Chiquita lagoon, in order to determine the importance of allochthonous estuarine detritus and in situ marine phytoplankton as carbon (C) sources for young fishes prior to entering the lagoon. Water samples from both the nearshore and the surf zones were collected for estimation of Chlorophyll a concentration, and δ13C and δ15N values of the particulate organic matter (POM). Isotopic composition of the zooplankton and fish larvae from both zones and fish juveniles from the surf zone were also estimated. The contribution of potential OM sources was quantified by Bayesian stable isotope mixing models (SIAR). SIAR models revealed that the POM composition in the coastal area close to Mar Chiquita lagoon comprised a mix of primary producers (terrestrial and marine). The cordgrass Spartina densiflora that develops in the saltmarshes bounding the lagoon, contributed most to the POM of the surf zone, being important as a C source for zooplankton from the same zone. Towards deeper waters (10–12 m, ~2.5 km offshore) with higher chlorophyll a concentrations, phytoplankton contributed most to the POM. Spartina densiflora was not relevant as a C source for larval and juvenile fishes. However, it was of importance to the group of primary consumers, which apparently sustain other zooplankton organisms that fish fed on. In this sense, the OM derived from S. densiflora and exported to the coastal area contributes to sustaining the prey for young fishes outside Mar Chiquita.

Keywords

Young fishes Organic matter Estuarine environment Stable isotopes SIAR model 

Notes

Acknowledgements

We are deeply grateful to J.M. Díaz de Astarloa and E. Mabragaña (BIMOPE, UNMdP, Argentina) for partially supporting the sampling; to Buenos Aires Province Ministry of Agrarian Subjects’ authorities, M. Iza and J. Mangiarotti (forest guard of Mar Chiquita Biosphere Reserve) for sampling permission; to S.M. Delpiani, C. Rumbold, A. Martínez, J.J. Rosso, D. Castellini and N. Lajud for field assistance; to D.A. Cucchi-Colleoni for chlorophyll a analysis, and to G.I. Álvarez, E. Fanjul and E.N. Gaitán for laboratory assistance. We thank the staff of the UC Davis Stable Isotope Facility for invaluable sample processing services and acknowledge the useful suggestions made by D.L.G. Noakes and two anonymous reviewers on an early draft. This study was supported by grant EXA 647/14 to E.M. Acha, and CONICET PIP 112-200901-00942 to J.M. Díaz de Astarloa and E. Mabragaña. D.O.B. was supported by fellowships from CONICET (Argentina). This is part of D.O.B’s Ph.D. thesis.

References

  1. Bergamino L, Lercari D, Defeo O (2011) Food web structure of sandy beaches: temporal and spatial variation using stable isotope analysis. Estuar Coast Shelf Sci 91:536–543.  https://doi.org/10.1016/j.ecss.2010.12.007 CrossRefGoogle Scholar
  2. Bertola GR (2006) Morfodinamica de playas del sudeste de la provincia de Buenos Aires (1983 a 2004). Lat Am J Sedimentol Basin Anal 13:31–57Google Scholar
  3. Botto F, Iribarne O (1999) Effect of the burrowing crab Chasmagnathus granulata (Dana) on the benthic community of a SW Atlantic coastal lagoon. J Exp Mar Biol Ecol 241:263–284.  https://doi.org/10.1016/S0022-0981(99)00089-1 CrossRefGoogle Scholar
  4. Botto F, Iribarne O (2000) Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments. Estuar Coast Shelf Sci 51:141–151.  https://doi.org/10.1006/ecss.2000.0642 CrossRefGoogle Scholar
  5. Botto F, Iribarne OO, Martínez MM, Delhey K, Carrete M (1998) The effect of migratory shorebirds on the benthic species of three southwestern Atlantic Argentinean estuaries. Estuaries 21:700.  https://doi.org/10.2307/1353274 CrossRefGoogle Scholar
  6. Botto F, Valiela I, Iribarne O, Martinetto P, Alberti J (2005) Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Mar Ecol Prog Ser 293:155–164.  https://doi.org/10.3354/meps293155 CrossRefGoogle Scholar
  7. Botto F, Iribarne O, Gutierrez J, Bava J, Gagliardini A, Valiela I (2006) Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab Chasmagnathus granulatus. Mar Ecol Prog Ser 312:201–210.  https://doi.org/10.3354/meps312201 CrossRefGoogle Scholar
  8. Botto F, Gaitán E, Mianzan H, Acha M, Giberto D, Schiariti A, Iribarne O (2011) Origin of resources and trophic pathways in a large SW Atlantic estuary: an evaluation using stable isotopes. Estuar Coast Shelf Sci 92:70–77.  https://doi.org/10.1016/j.ecss.2010.12.014 CrossRefGoogle Scholar
  9. Bruno DO, Acha EM (2015) Winds vs. tides: factors ruling the recruitment of larval and juvenile fishes into a micro-tidal and shallow choked lagoon (Argentina). Environ Biol Fish 98:1449–1458.  https://doi.org/10.1007/s10641-014-0371-3 CrossRefGoogle Scholar
  10. Bruno DO, Delpiani SM, Cousseau MB, Díaz de Astarloa JM, Blasina GE, Mabragaña E, Acha EM (2014) Ocean-estuarine connection for ichthyoplankton through the inlet channel of a temperate choked coastal lagoon (Argentina). Mar Freshw Res 65:1116–1130.  https://doi.org/10.1071/MF13128 CrossRefGoogle Scholar
  11. Bruno DO, Cousseau MB, Díaz de Astarloa JM, Acha EM (2015) Recruitment of juvenile fishes into a small temperate choked lagoon ( Argentina ) and the influence of environmental factors during the process. Sci Mar 79:1–13CrossRefGoogle Scholar
  12. Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications studies using multiple stable isotopes. Limnol Oceanogr 40(3):622–625CrossRefGoogle Scholar
  13. Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci U S A 93:10844–10847.  https://doi.org/10.1073/pnas.93.20.10844 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Canino MF, Grant GC (1985) The feeding and diet of Sagitta tenuis (Chaetognatha) in the lower Chesapeake Bay. J Plankton Res 7:175–188.  https://doi.org/10.1093/plankt/7.2.175 CrossRefGoogle Scholar
  15. Carabel S, Godínez-Domínguez E, Verísimo P, Fernández L, Freire J (2006) An assessment of sample processing methods for stable isotope analyses of marine food webs. J Exp Mar Biol Ecol 336(2):254–261CrossRefGoogle Scholar
  16. Créach V, Schricke MT, Bertru G, Mariotti A (1997) Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers. Estuar Coast Shelf Sci 44:599–611.  https://doi.org/10.1006/ecss.1996.0147 CrossRefGoogle Scholar
  17. Currin CA, Newell SY, Paerl HW (1995) The role of standing dead Spartina alterniflora and benthic microalgae in salt-marsh food webs - considerations based on multiple stable-isotope analysis. Mar Ecol Ser 121:99–116.  https://doi.org/10.3354/meps121099 CrossRefGoogle Scholar
  18. Cury P, Shannon L, Shin YJ (2003) The functioning of marine ecosystems: a fisheries perspective. In: Sinclair M, Valdimarson G (eds) Responsible Fisheries in the Marine Ecosystem. FAO Fisheries Technical Paper N°400. pp 103–123Google Scholar
  19. Cushing H, Horwood JW (1994) The growth and death of fish larvae. J Plankton Res 16(3):291–300CrossRefGoogle Scholar
  20. Dame RF, Allen DM (1996) Between estuaries and the sea. J Exp Mar Biol Ecol 200:169–185.  https://doi.org/10.1016/S0022-0981(96)02642-1 CrossRefGoogle Scholar
  21. Deegan LA, Garritt RH (1997) Evidence for spatial variability in estuarine food webs. Mar Ecol Prog Ser 147:31–47.  https://doi.org/10.3354/meps147031 CrossRefGoogle Scholar
  22. Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar Ecol Prog Ser 295:1–20.  https://doi.org/10.3354/meps295001 CrossRefGoogle Scholar
  23. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Ac 42(5):495–506CrossRefGoogle Scholar
  24. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Ac 45(3):341–351CrossRefGoogle Scholar
  25. Derisio C, Braverman M, Gaitán E, Hozbor C, Ramírez F, Carreto J, Mianzan H (2014) The turbidity front as a habitat for Acartia tonsa (Copepoda) in the Río de la Plata, Argentina-Uruguay. J Sea Res 85:197–204CrossRefGoogle Scholar
  26. Duffy JE, Hay ME (2000) Strong impacts of grazing amphipods on the organization of a benthic community. Ecol Monogr 70:237–263.  https://doi.org/10.1890/0012-9615(2000)070[0237:SIOGAO]2.0.CO;2 CrossRefGoogle Scholar
  27. Fanjul E, Escapa M, Montemayor D, Addino M, Alvarez MF, Grela MA, Iribarne O (2015) Effect of crab bioturbation on organic matter processing in south West Atlantic intertidal sediments. J Sea Res 95:206–216.  https://doi.org/10.1016/j.seares.2014.05.005 CrossRefGoogle Scholar
  28. France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312.  https://doi.org/10.3354/meps124307 CrossRefGoogle Scholar
  29. Fry B, Sherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:13–47Google Scholar
  30. Fuiman LA (2002) Chapter 1: special considerations of fish eggs and larvae. In: Fuiman LA, Werner RG (eds) Fishery science: the unique contributions of early life stages. Blackwell Science, Oxford, pp 1–32Google Scholar
  31. Garcia AM, Hoeinghaus DJ, Vieira JP, Winemiller KO (2007) Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuar Coast Shelf Sci 73:399–408.  https://doi.org/10.1016/j.ecss.2007.02.003 CrossRefGoogle Scholar
  32. Grey J, Jones RI, Sleep D (2001) Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in loch ness, as indicated by stable isotope analysis. Limnol Oceanogr 46(3):505–513CrossRefGoogle Scholar
  33. Holland MM (1988) SCOPE/MAB technical consultations on landscape boundaries: report of a SCOPE/MAB workshop on ecotones. Biol Inter Special Issue 17:47–106Google Scholar
  34. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. J du … 30:3–15. doi:  https://doi.org/10.1093/icesjms/30.1.3
  35. Houde ED (2002) Chapter 3: mortality. In: Fuiman LA, Werner RG (eds) Fishery science: the unique contributions of early life stages. Blackwell Science, Oxford, pp 64–87Google Scholar
  36. Howe ER, Simenstad CA (2015) Using stable isotopes to discern mechanisms of connectivity in estuarine detritus-based food webs. Mar Ecol Prog Ser 518:13–29.  https://doi.org/10.3354/meps11066 CrossRefGoogle Scholar
  37. Iribarne O, Bortolus A, Botto F (1997) Between-habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:137–145.  https://doi.org/10.3354/meps155137 CrossRefGoogle Scholar
  38. Isacch JP, Costa CSB, Rodríguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900.  https://doi.org/10.1111/j.1365-2699.2006.01461.x CrossRefGoogle Scholar
  39. Jansson BO (1988) Coastal-offshore ecosystem interactions. Springer-Verlag, New YorkCrossRefGoogle Scholar
  40. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchments hydrology. Elsevier Science, Amsterdam, pp 519–575CrossRefGoogle Scholar
  41. Kendall C, Silva SR, Kelly VJ (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrol Process 15:1301–1346.  https://doi.org/10.1002/hyp.216 CrossRefGoogle Scholar
  42. Kjerfve B (1994) Coastal lagoons. Elsevier Oceanogr Ser 60:1–8CrossRefGoogle Scholar
  43. Kjerfve B, Magill KE (1989) Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar Geol 88:187–199.  https://doi.org/10.1016/0025-3227(89)90097-2 CrossRefGoogle Scholar
  44. Kneib RT (2002) Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publisher, New York, pp 267–291CrossRefGoogle Scholar
  45. Lajtha K, Michener R (1994) Introduction. In: Lajtha K, Michener R (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publishers, Oxford, pp XI–XIXGoogle Scholar
  46. Leite RG, Araújo-Lima C, Vitória R, Martinelli L (2002) Stable isotope analysis of energy sources for larvae of eight fish species from the Amazon floodplain. Ecol Freshw Fish 11:56–63.  https://doi.org/10.1034/j.1600-0633.2002.110106.x CrossRefGoogle Scholar
  47. Lucas AJ, Guerrero RA, Mianzán HW et al (2005) Coastal oceanographic regimes of the northern argentine continental shelf (34-43°S). Estuar Coast Shelf Sci 65:405–420.  https://doi.org/10.1016/j.ecss.2005.06.015 CrossRefGoogle Scholar
  48. Mancinelli G (2012) On the trophic ecology of Gammaridea (Crustacea: Amphipoda) in coastal waters: a European-scale analysis of stable isotopes data. Estuar Coast Shelf Sci 114:130–139.  https://doi.org/10.1016/j.ecss.2011.12.003 CrossRefGoogle Scholar
  49. Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal rnarine ecosystems. Limnol Oceanogr 33:9–930.  https://doi.org/10.4319/lo.1988.33.4_part_2.0910 Google Scholar
  50. Martinetto P, Iribarne O, Palomo G (2005) Effect of fish predation on intertidal benthic fauna is modified by crab bioturbation. J Exp Mar Biol Ecol 318:71–84.  https://doi.org/10.1016/j.jembe.2004.12.009 CrossRefGoogle Scholar
  51. Martinetto P, Ribeiro P, Iribarne O (2007) Changes in distribution and abundance of juvenile fishes in intertidal soft sediment areas dominated by the burrowing crab Chasmagnathus granulatus. Mar Freshw Res 58:194–203.  https://doi.org/10.1071/MF06079 CrossRefGoogle Scholar
  52. McLachlan A, Brown AC (2006) The ecology of Sandy shores. Academic Press, USA, BurlingtonGoogle Scholar
  53. Merlotto A, Bertola GR (2009) Coastline evolution at Balneario Parque Mar Chiquita, Argentina. Ciencias Mar 35:271–286CrossRefGoogle Scholar
  54. Michener RH, Schell DM (1994) Stable isotopes ratios as tracers in marine aquatic food webs. In: Lajtha K, Michener RM (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publishers, Oxford, pp 138–157Google Scholar
  55. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140.  https://doi.org/10.1016/0016-7037(84)90204-7 CrossRefGoogle Scholar
  56. Montoya JP (2007) Natural abundance of 15N in marine planktonic ecosystems. In: Michener RM, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing Ltd, Oxford, pp 176–201Google Scholar
  57. Palomo G, Botto F, Navarro D, Escapa M, Iribarne O (2003) Does the presence of the SW Atlantic burrowing crab Chasmagnathus granulatus Dana affect predator-prey interactions between shorebirds and polychaetes? J Exp Mar Biol Ecol 290(2):211–228CrossRefGoogle Scholar
  58. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5(3):e9672CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pasquaud S, Pillet M, David V, Sautour B, Elie P (2010) Determination of fish trophic levels in an estuarine system. Estuar Coast Shelf Sci 86:237–246.  https://doi.org/10.1016/j.ecss.2009.11.019 CrossRefGoogle Scholar
  60. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  61. Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13(2):225–231CrossRefGoogle Scholar
  62. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology:the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316.  https://doi.org/10.1146/annurev.ecolsys.28.1.289 CrossRefGoogle Scholar
  63. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718.  https://doi.org/10.2307/3071875 CrossRefGoogle Scholar
  64. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing (Version 3.2.2). http://www.R-project.org/
  65. Reta R, Martos P, Perillo GME, Piccolo MC, Ferrante A (2001) Características hidrográficas del estuario de la laguna Mar Chiquita. In: Iribarne O (ed) Reserva de Biósfera Mar Chiquita: Características físicas, biológicas y ecológicas. Editorial Martín, Mar del Plata, pp 31–52Google Scholar
  66. Russo T, Costa C, Cataudella S (2007) Correspondence between shape and feeding habit changes throughout ontogeny of gilthead sea bream Sparus aurata L., 1758. J Fish Biol 71(3):629–656CrossRefGoogle Scholar
  67. Sato NE, Hernández D, Viñas MD (2011) Hábitos alimentarios de Sagitta friderici Ritter-Zahony en las aguas costeras de la provincia de Buenos Aires, Argentina. Bol Invest Mar Cost 40(1):59–74Google Scholar
  68. Sullivan M, Moncreiff C (1990) Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Mar Ecol Prog Ser 62:149–159.  https://doi.org/10.3354/meps062149 CrossRefGoogle Scholar
  69. Underwood AJ (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, UKGoogle Scholar
  70. UNESCO (1996) Nine new biosphere reserves designated by the MAB bureau. Biosphere Reserves: Bull World Network 4:6–10Google Scholar
  71. Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can J Fish Aquat Sci 54:1142–1158.  https://doi.org/10.1139/f97-016 CrossRefGoogle Scholar
  72. Vinagre C, Salgado J, Cabral HN, Costa MJ (2011) Food web structure and habitat connectivity in fish estuarine nurseries-impact of river flow. Estuar Coasts 34:663–674.  https://doi.org/10.1007/s12237-010-9315-0 CrossRefGoogle Scholar
  73. Vizzini S, Mazzola A (2006) Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: evidence for spatial variability. Estuar Coast Shelf Sci 66(3):459–467CrossRefGoogle Scholar
  74. Wells RJD, Cowan JH, Fry B (2008) Feeding ecology of red snapper Lutjanus campechanus in the northern Gulf of Mexico. Mar Ecol Prog Ser 361:213–225CrossRefGoogle Scholar
  75. Whitfield AK (1994) Abundance of larval and O+ juvenile marine fishes in the lower reaches of 3 southern African estuaries with differing freshwater inputs. Mar Ecol Prog Ser 105:257–268.  https://doi.org/10.3354/meps105257 CrossRefGoogle Scholar
  76. Winemiller KO, Akin S, Zeug SC (2007) Production sources and food web structure of a temperate tidal estuary: integration of dietary and stable isotope data. Mar Ecol Prog Ser 343:63–76.  https://doi.org/10.3354/meps06884 CrossRefGoogle Scholar
  77. Wissel B, Gaçe A, Fry B (2005) Tracing river influences on phytoplankton dynamics in two Louisiana estuaries. Ecology 86:2751–2762.  https://doi.org/10.1890/04-1714 CrossRefGoogle Scholar
  78. Zar JH (2010) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Daniel O. Bruno
    • 1
    • 2
  • Luciana Riccialdelli
    • 1
    • 2
  • Florencia Botto
    • 3
    • 4
  • Eduardo M. Acha
    • 4
    • 5
  1. 1.Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200UshuaiaArgentina
  2. 2.Instituto de Ciencias Polares, Ambiente y Recursos NaturalesUniversidad Nacional de Tierra del Fuego (ICPA-UNTDF)UshuaiaArgentina
  3. 3.Laboratorio de Ecología, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata (UNMdP)Mar del PlataArgentina
  4. 4.Instituto de Investigaciones Marinas y Costeras (IIMyC-UNMdP-CONICET)Mar del PlataArgentina
  5. 5.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del PlataArgentina

Personalised recommendations