Environmental Biology of Fishes

, Volume 100, Issue 11, pp 1383–1396 | Cite as

Phylogeography of freshwater fishes of the Qilian Mountains area (Triplophysa leptosoma, Cobitidae: Cypriniformes)

  • Fen Zhang
  • Lina Zhu
  • Lixun Zhang
  • Wenbin Wang
  • Guojun Sun
Article

Abstract

The effects of the physical environment on populations of organisms endemic to the Tibetan Plateau and its surrounding areas have attracted increased scientific interest in recent years. Triplophysa leptosoma (Cobitidae: Cypriniformes) is an endemic species restricted to the Tibet Plateau and adjacent areas. Its distribution includes river systems around the Qilian mountains areas which located in the northeast edge of Tibet Plateau, including the Shiyang River, Heihe River and Shule River in the Hexi Corridor, Qaidam Basin river system and Yellow River system. In this study, we use mitochondrial DNA sequences (cytochrome b gene 1000 bp and cytochrome oxidase I gene 635 bp) to investigate the effects of geomorphological changes associated with the uplift of the Qilian Mountains on the major patterns of intraspecific diversification and population structure of the T. leptosoma. Based on our data, phylogenetic relationships among the 48 haplotypes revealed five major clades with strong geographic orientation. Our results suggest that the origin of these clades may correspond to the intermittent uprise of the Qilian Mountains. The Quaternary climatic changes and glacial-interglacial cycles had an important effect on the differentiation of haplotypes and the genetic diversity of the T. leptosoma. Meanwhile, population expansion also occurred during the repeated glacial event and the basin interconnections in the past.

Keywords

Triplophysa leptosoma Cytochrome b gene Cytochrome oxidase I gene Phylogenetic relationships Population expansion Qilian Mountains 

Notes

Acknowledgements

We are grateful to Baocheng Jin for his selfless help with sampling, Bin Tian, Bei An, Dekui He and Li Ding for suggestions to data analysis, and especially thank Guillermo Orti for helpful comments on earlier versions of this manuscript. This study was partially supported by grants to GS (2014DFG32090 and 2012DFG31450) from the International S&T Cooperation Program of China.

Compliance with ethical standards

This study was funded by grants to GS (2014DFG32090 and 2012DFG31450) from the International S&T Cooperation Program of China. In this research, the materials are the Triplophysa leptosome fish samples. All procedures performed in studies involving animals were in accordance with the ethical standards of the Lanzhou University at which the studies were conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ali SS, Yu Y, Pfosser M, Wetschnig W (2012) Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (reconstruct ancestral state in phylogenies). Ann Bot 109:95–107. doi:10.1093/aob/mcr274 CrossRefPubMedGoogle Scholar
  2. An Z, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times. Nature 411:62–66. doi:10.1038/35075035 CrossRefGoogle Scholar
  3. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. doi:10.1093/oxfordjournals.molbev.a026036 CrossRefPubMedGoogle Scholar
  4. Chen Z (1988) A preliminary analysis of paleo-limnology and its environment at the upper reaches of the Huanghe river. In: Proceedings of the Third Chinese Oceanological and Limnological Science Conference. Science Press, BeijingGoogle Scholar
  5. Chen Y (1998) The fishes of the Hengduan Mountains region. Science Press, BeijingGoogle Scholar
  6. Chu Y, Zhu L, Chen W et al (2015) Geomorphology and evolution of the upper Shule River. Quat Sci 35:465–474. doi:10.11928/j.issn.1001-7410.2015.02.21 Google Scholar
  7. Doadrio I, Perdices A (2005) Phylogenetic relationships among the Ibero-African cobitids (Cobitis, cobitidae) based on cytochrome b sequence data. Mol Phylogenet Evol 37:484–493. doi:10.1016/j.ympev.2005.07.009 CrossRefPubMedGoogle Scholar
  8. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi:10.1186/1471-2148-7-214 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  10. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491. doi:10.1007/s00424-009-0730-7 PubMedPubMedCentralGoogle Scholar
  11. Fang X (2005) Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan plateau uplift. Sci China Ser D Earth Sci 48:1040. doi:10.1360/03yd0188 CrossRefGoogle Scholar
  12. Fang X, Zhao Z, Li J et al (2004) Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan plateau uplift. Sci China Ser D Earth Sci 34:97–106Google Scholar
  13. Feng S (1981) Evolution of Hexi water system in Gansu. J Lanzhou Univ 1:125–129Google Scholar
  14. Feng S (1988) The changes of Heihe river (Ruoshui) system in Hexi. Geogr Res 7:18–26Google Scholar
  15. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  16. George AD, Marshallsea SJ, Wyrwoll KH et al (2001) Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology 29:939–942CrossRefGoogle Scholar
  17. Harrison TM, Copeland P, Kidd WSF, Yin AN (1992) Raising Tibet. Science (80- ) 255:1663–1670. doi:10.1126/science.255.5052.1663
  18. He SP, Cao WX, Chen YY (2001) The uplift of Qinghai-Xizang (Tibet) plateau and the vicariance speciation of glyptosternoid fishes (Siluriformes : Sisoridae). Sci China Ser C Life Sci 44:644–651. doi:10.1007/BF02879359 CrossRefGoogle Scholar
  19. Herzenstein SM (1888) Fische. In: Wissenschaftliche Resultate der von N. M. Przewalski nach Central-Asien unternommenen Reisen. Zoologischer TheilGoogle Scholar
  20. Herzschuh U, Birks HJB, Ni J et al (2010) Holocene land-cover changes on the Tibetan plateau. The Holocene 20:91–104CrossRefGoogle Scholar
  21. Hou F, Zhang X, Zhang X et al (2012) High intra-population genetic variability and inter-population differentiation in a plateau specialized fish, Triplophysa orientalis. Environ Biol Fish 93:519–530. doi:10.1007/s10641-011-9947-3 CrossRefGoogle Scholar
  22. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144. doi:10.1007/BF02515385 CrossRefPubMedGoogle Scholar
  23. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701. doi:10.1093/molbev/mss020 CrossRefPubMedGoogle Scholar
  24. Li J (1963) Discussion of the recent age and the quaternary glaciation of Qilian Mountains. J Lanzhou Univ:77–86Google Scholar
  25. Li M (2000) Countermeasures for environmental protection in the Qinghai-Tibet plateau. Resour Sci 22:78–82Google Scholar
  26. Li C, Yin H, Yu Q, Huang C (1998) Tectonic uplift, water system response and environment evolvement in the eastern part of the Kunlun Mountains. Earth Sci China Univ Geosci 23:456–459Google Scholar
  27. Li C, Yin H, Yu Q (1999) The tectonic uplift of eastern Kunlun Mountains and development trend of drainage evolution. Chinese Sci Bull 44:211–214Google Scholar
  28. Li J, Fang X, Pan B et al (2001) Late Cenozoic intensive uplift of Qinghai-Xizang plateau and its impacts on environments in surrounding area. Quat Sci 21:381–391Google Scholar
  29. Li W, Chen X, Hu Y (2015) A new species of the genus Triplophysa (Cypriniformes: Nemacheilidae), Triplophysa longliensis sp. Nov, from Guizhou, China. Zootaxa 3905:187–194CrossRefGoogle Scholar
  30. Liao CY, Downie SR, Yu Y, He XJ (2012) Historical biogeography of the Angelica group (Apiaceae tribe Selineae) inferred from analyses of nrDNA and cpDNA sequences. J Syst Evol 50:206–217. doi:10.1111/j.1759-6831.2012.00182.x CrossRefGoogle Scholar
  31. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  32. Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Rev Geophys 31:357. doi:10.1029/93RG02030 CrossRefGoogle Scholar
  33. Pääbo S (1990) Amplifying ancient DNA. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 159–166Google Scholar
  34. Prokofiev AM (2007) Materials towards the revision of the genus Triplophysa rendahl, 1933 (Cobitoidea: Balitoridae: Nemacheilinae): A revision of nominal taxa of Herzenstein (1888) described within the species “Nemachilus” stoliczkae and “N.” dorsonotatus, with the description of the new species T. scapanognatha sp. nova. J Ichthyol 47:1–20. doi:10.1134/S0032945207010018 CrossRefGoogle Scholar
  35. Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615CrossRefPubMedGoogle Scholar
  36. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569. doi:10.1534/genetics.103.024182 PubMedGoogle Scholar
  37. Ronquist F, Huelsenbeck J, Teslenko M (2012) MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  38. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Swofford DL (2002) Phylogenetic analysis using parsimony. Options 42:294–307. doi:10.1007/BF02198856 Google Scholar
  40. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  41. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang E (1997) Displacement and timing along the northern strand of the Altyn Tagh fault zone, northern Tibet. Earth Planet Sci Lett 150:55–64. doi:10.1016/S0012-821X(97)00085-X CrossRefGoogle Scholar
  44. Wang Q, Wang XQ, Sun H et al (2014) Evolution of the platycodonoid group with particular references to biogeography and character evolution. J Integr Plant Biol 56:995–1008. doi:10.1111/jipb.12203 CrossRefPubMedGoogle Scholar
  45. Wang X, Wang Y, Li Q et al (2015) Cenozoic vertebrate evolution and paleoenvironment in Tibetan plateau: progress and prospects. Gondwana Res 27:1335–1354. doi:10.1016/j.gr.2014.10.014 CrossRefGoogle Scholar
  46. Ward RD, Zemlak TS, Innes BH et al (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond Ser B Biol Sci 360:1847–1857. doi:10.1098/rstb.2005.1716 CrossRefGoogle Scholar
  47. Yao T, Pu J, Lu A et al (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan plateau, China, and surrounding regions. Arct Antarct Alp Res 39:642–650. doi:10.1657/1523-0430(07-510)[YAO]2.0.CO;2 CrossRefGoogle Scholar
  48. Yao T, Thompson L, Yang W et al (2012) Different glacier status with atmospheric circulations in Tibetan plateau and surroundings. Nat Clim Chang 2:663–667. doi:10.1038/nclimate1580 CrossRefGoogle Scholar
  49. Yu Y, Harris AJ, He X (2010) S-DIVA (statistical dispersal-Vicariance analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 56:848–850. doi:10.1016/j.ympev.2010.04.011 CrossRefPubMedGoogle Scholar
  50. Yu Y, Harris AJ, Blair C, He X (2015) RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Mol Phylogenet Evol 87:46–49. doi:10.1016/j.ympev.2015.03.008 CrossRefPubMedGoogle Scholar
  51. Yue Y, Ritts BD, Graham S a. (2001) Initiation and long-term slip history of the Altyn Tagh fault. Int Geol Rev 43:1087–1093. doi:10.1080/00206810109465062 CrossRefGoogle Scholar
  52. Zhang Z, Yu Q, Zhang K et al (2003) Geomorphological evolution of Quaternary River from upper Yellow River and geomorphological evolution investigation for 1: 250 000 scale geological mapping in Qinghai-Tibet plateau. Earth Sci J China Univ Geosci 28:621–626Google Scholar
  53. Zhang HP, Craddock WH, Lease RO et al (2011) Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan plateau. Basin Res 24:31–50. doi:10.1111/j.1365-2117.2011.00512.x CrossRefGoogle Scholar
  54. Zhao Y, Zhang J, Zhang C (2008) Fish diversity on the Qinghai-Tibet plateau. Biol Bull 43:7–10Google Scholar
  55. Zhao K, Duan Z, Peng Z et al (2011) Phylogeography of the endemic Gymnocypris chilianensis (Cyprinidae): sequential westward colonization followed by allopatric evolution in response to cyclical Pleistocene glaciations on the Tibetan plateau. Mol Phylogenet Evol 59:303–310. doi:10.1016/j.ympev.2011.02.001 CrossRefPubMedGoogle Scholar
  56. Zheng LP, Du LN, Chen XY, Yang JX (2009) A new species of genus Triplophysa (Nemacheilinae: Balitoridae), Triplophysa longipectoralis sp. nov, from Guangxi, China. Environ Biol Fish 85:221–227. doi:10.1007/s10641-009-9485-4 CrossRefGoogle Scholar
  57. Zhou S, Li J, Zhang S (2002) Quaternary glaciation of the Bailang River valley, Qilian Shan. Quat Int 97–98:103–110. doi:10.1016/S1040-6182(02)00055-1 CrossRefGoogle Scholar
  58. Zhu S (1989) The loaches of the subfamily Nemacheilinae in China (Cypriniformes: Cobitidae). Jiangsu Science and Technology Publishing House, NanjingGoogle Scholar
  59. Zhu L (2004) Uplift of the north of Qinghai-Tibet plateau and record in basins and geomorphy. Chengdu University of Technology, DissertationGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Fen Zhang
    • 1
  • Lina Zhu
    • 2
  • Lixun Zhang
    • 3
  • Wenbin Wang
    • 1
  • Guojun Sun
    • 1
  1. 1.State Key Laboratory of Grassland and Agro-Ecosystems, School of Life SciencesLanzhou UniversityLanzhouChina
  2. 2.School of Life SciencesSouthwest Forestry UniversityKunmingChina
  3. 3.School of Life SciencesLanzhou UniversityLanzhouChina

Personalised recommendations