Age validation and seasonal growth patterns of a subtropical marsh fish: The Gulf Killifish, Fundulus grandis

Abstract

Fundulus grandis (Baird and Girard), the Gulf Killifish, is an abundant species throughout the marshes of the northern Gulf of Mexico. Its wide distribution and high site fidelity makes it an ideal indicator species for brackish and salt marshes, which experience a variety of anthropogenic disturbances. Despite the ecological, commercial, and scientific importance of F. grandis, age determination methods have not been validated and little is known of its growth pattern. By combining a tag-recapture study with a chemical marker to stain otoliths, we validated an ageing method for F. grandis adults (49–128 mm TL) using whole sagittal otoliths and determined growth rates of recaptured individuals in winter (n = 58) and summer (n = 36) in Louisiana. Mean somatic growth in length was significantly greater during the winter (0.085 mm d−1) than summer (0.054 mm d−1). In contrast, mean otolith growth was significantly greater in summer (1.37 μm d−1) than winter (0.826 μm d−1). The uncoupling of somatic and otolith growth may be primarily attributed to warm summer temperatures, which led to enhanced otolith growth while simultaneously reducing somatic growth. Fundulus grandis was aged to a maximum of 2.25 years. The parameters of the von Bertalanffy growth model were estimated as: L  = 87.27 mm, k = 2.43 year−1, and t 0 = −0.022. These findings reveal essential age and growth information for F. grandis and provide a benchmark to evaluate responses to environmental disturbances.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

References

  1. Able KW, Fahay MP (2010) Ecology of estuarine fishes. Johns Hopkins University Press, Baltimore

    Google Scholar 

  2. Able KW, Hata D (1984) Reproductive behavior in the Fundulus heteroclitus-F. grandis complex. Copeia 1984:820–825. doi:10.2307/1445323

    Article  Google Scholar 

  3. Able KW, Hagan SM, Brown SA (2006) Habitat use, movement, and growth of young-of-the-year Fundulus spp. in southern New Jersey salt marshes: comparisons based on tag/recapture. J Exp Mar Biol Ecol 335:177–187

    Article  Google Scholar 

  4. Able KW, Vivian DN, Petruzzelli G, Hagan SM (2012) Connectivity among salt marsh subhabitats: residency and movements of the mummichog (Fundulus heteroclitus). Estuar Coasts 35:743–753

    Article  CAS  Google Scholar 

  5. Able KW, López-Duarte PC, Fodrie FJ et al (2015) Fish assemblages in Louisiana salt marshes: effects of the Macondo oil spill. Estuar Coasts 38:1385–1398. doi:10.1007/s12237-014-9890-6

    Article  CAS  Google Scholar 

  6. Araya M, Medina M, Arancibia H (2003) Preliminary results of the empirical validation of daily increments in otoliths of jack mackerel Trachurus symmetricus (Ayres, 1855) marked with oxytetracycline. Sci Mar 67:471–475

    Article  CAS  Google Scholar 

  7. Barber MC, Jenkins GP (2001) Differential effects of food and temperature lead to decoupling of short-term otolith and somatic growth rates in juvenile King George whiting. J Fish Biol 58:1320–1330. doi:10.1006/jfbi.2000.1539

    Article  Google Scholar 

  8. Barger LE (1985) Age and growth of Atlantic croakers in the northern Gulf of Mexico, based on otolith sections. T Am Fish Soc 114:847–850

    Article  Google Scholar 

  9. Battaglia P, Malara D, Romeo T, Andaloro F (2010) Relationships between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean Sea (Strait of Messina, Italy). Sci Mar 74:605–612. doi:10.3989/scimar.2010.74n3605

    Article  Google Scholar 

  10. Beamish RJ, McFarlane GA (2000) Reevaluation of the interpretation of annuli from otoliths of a long-lived fish, Anoplopoma fimbria. Fish Res 46:105–111. doi:10.1016/s0165-7836(00)00137-5

    Article  Google Scholar 

  11. Beddington JR, Kirkwood GP (2005) The estimation of potential yield and stock status using life-history parameters. Philos T R Soc B 360:163–170. doi:10.1098/rstb.2004.1582

    Article  CAS  Google Scholar 

  12. Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. Fishery Investigations Series II, 19. HSMO, London

  13. Bonnet X, Bradshaw D, Shine R (1998) Capital versus income breeding: an ectothermic perspective. Oikos 83:333–342. doi:10.2307/3546846

    Article  Google Scholar 

  14. Boschung HT, Mayden RL (2004) Fishes of Alabama. Smithsonian Books, Washington D.C

    Google Scholar 

  15. Brothers EB (1979) Age and growth studies on tropical fishes. In: Roedel PM, Saila SB (eds) Stock assessment for tropical small-scale fisheries. University of Rhode Island Press, Rhode Island, pp 119–136

    Google Scholar 

  16. Brown ML, Powell JL, Lucchesi DO (2002) In-transit oxytetracycline marking, nonlethal mark detection, and tissue residue depletion in yellow perch. N Am J Fish Manage 22:236–242

    Article  Google Scholar 

  17. Brown CA, Gothreaux CT, Green CC (2011) Effects of temperature and salinity during incubation on hatching and yolk utilization of Gulf killifish Fundulus grandis embryos. Aquaculture 315:335–339. doi:10.1016/j.aquaculture.2011.02.041

    Article  Google Scholar 

  18. Burnett KG, Bain LJ, Baldwin WS et al (2007) Fundulus as the premier teleost model in environmental biology: opportunities for new insights using genomics. Comp Biochem Phys D 2:257–286. doi:10.1016/j.cbd.2007.09.001

    CAS  Article  Google Scholar 

  19. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297. doi:10.3354/meps188263

    Article  CAS  Google Scholar 

  20. Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242. doi:10.1006/jfbi.2001.1668

    Article  Google Scholar 

  21. Campbell JS, MacCrimmon HR (1970) Biology of the emerald shiner Notropis atherinoides Rafinesque in Lake Simcoe, Canada. J Fish Biol 2:259–273

    Article  Google Scholar 

  22. Chesney EJ, Baltz DM, Thomas RG (2000) Louisiana estuarine and coastal fisheries and habitats: perspectives from a fish's eye view. Ecol Appl 10:350–366

    Article  Google Scholar 

  23. Chilton DE, Beamish RJ (1982) Age determination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Can Spec Publ Fish Aquat Sci 60:1–102

    Google Scholar 

  24. Choat JH, Robertson DR, Ackerman JL, Posada JM (2003) An age-based demographic analysis of the Caribbean stoplight parrotfish Sparisoma viride. Mar Ecol Prog Ser 246:265–277. doi:10.3354/meps246265

    Article  Google Scholar 

  25. Dibble KL, Meyerson LA (2012) Tidal flushing restores the physiological condition of fish residing in degraded salt marshes. PLoS One 7:e46161. doi:10.1371/journal.pone.0046161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dubansky B, Whitehead A, Miller JT, Rice CD, Galvez F (2013) Multitissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident Gulf killifish (Fundulus grandis). Environ Sci Technol 47:5074–5082. doi:10.1021/es400458p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Duffy WJ, McBride RS, Hendricks ML, Oliveira K (2012) Otolith age validation and growth estimation from oxytetracycline-marked and recaptured American shad. T Am Fish Soc 141:1664–1671. doi:10.1080/00028487.2012.720631

    Article  Google Scholar 

  28. Farley JH, Williams AJ, Clear NP, Davies CR, Nicol SJ (2013) Age estimation and validation for South Pacific albacore Thunnus alalunga. J Fish Biol 82:1523–1544. doi:10.1111/jfb.12077

    Article  PubMed  CAS  Google Scholar 

  29. Fey DP (2005) Is the marginal otolith increment width a reliable recent growth index for larval and juvenile herring? J Fish Biol 66:1692–1703. doi:10.1111/j.1095-8649.00716.x

    Article  Google Scholar 

  30. Fielder DG (2002) Methodology for immersion marking walleye fry and fingerlings in oxytetracycline hydrochloride and its detection with fluorescence microscopy. Michigan Department of Natural Resources, Lansing

    Google Scholar 

  31. Finley MA, Courtenay SC, Teather KL, van den Heuvel MR (2009) Assessment of northern mummichog (Fundulus heteroclitus macrolepidotus) as an estuarine pollution monitoring species. Water Qual Res J Can 44:323–332

    Article  CAS  Google Scholar 

  32. Fodrie FJ, Able KW, Galvez F, Heck KL, Jensen OP et al (2014) Integrating organismal and population responses of estuarine fishes in Macondo spill research. Bioscience 64:778–788

    Article  Google Scholar 

  33. Fowler AJ (1990) Validation of annual growth increments in the otoliths of a small, tropical coral reef fish. Mar Ecol Prog Ser 64:25–38. doi:10.3354/meps064025

    Article  Google Scholar 

  34. Fowler AJ, Doherty PJ (1992) Validation of annual growth increments in the otoliths of two species of damselfish from the southern Great Barrier Reef. Aust J Mar Fresh Res 43:1057–1068

    Article  Google Scholar 

  35. Francis RICC, Paul LJ, Mulligan KP (1992) Ageing of adult snapper (Pagrus auratus) from otolith annual ring counts: validation by tagging and oxytetracycline injection. Aust J Mar Fresh Res 43:1069–1089

    Article  Google Scholar 

  36. Frisk MG, Miller TJ, Dulvy NK (2005) Life histories and vulnerability to exploitation of elasmobranchs: inferences from elasticity, perturbation and phylogenetic analyses. J North Atl Fish Organ 35:27–45

    Article  Google Scholar 

  37. Fritz ES, Garside ET (1975) Comparison of age composition, growth, and fecundity between two populations each of Fundulus heteroclitus and F. diaphanus (Pisces: Cyprinodontidae). Can J Zoolog 53:361–369

    Article  CAS  Google Scholar 

  38. Froese R, Pauly D (eds) (2016) FishBase: world wide web electronic publication (Version 06/2016). www.fishbase.org. Accessed 1 Aug 2016

  39. Galleher SN, Gilg MR, Smith KJ (2010) Comparison of larval thermal maxima between Fundulus heteroclitus and F. grandis. Fish Physiol Biochem 36:731–740. doi:10.1007/s10695-009-9347-1

    Article  PubMed  CAS  Google Scholar 

  40. Gibbs MA, Kurth BN, Bridges CD (2013) Age and growth of the loricariid catfish Pterygoplichthys disjunctivus in Volusia Blue Spring, Florida. Aquat Invasions 8:207–218

  41. Gothreaux CT, Green CC (2012) Effects of shading on the reproductive output and embryo viability of Gulf killifish. N Am J Aquacult 74:266–272. doi:10.1080/15222055.2012.672368

    Article  Google Scholar 

  42. Greeley MS, MacGregor R (1983) Annual and semilunar reproductive cycles of the Gulf killifish, Fundulus grandis, on the Alabama Gulf Coast. Copeia 1983:711–718

    Article  Google Scholar 

  43. Greeley MS, MacGregor R, Marion KR (1988) Changes in the ovary of the Gulf killifish, Fundulus grandis (Baird and Girard), during seasonal and semilunar spawning cycles. J Fish Biol 33:97–107

    Article  Google Scholar 

  44. Green C (2013) Intensive (non-pond) culture of Gulf killifish (1202). Louisiana State University Agricultural Center: Southern Regional Aquaculture Center

  45. Green CC, Gothreaux CT, Lutz CG (2010) Reproductive output of Gulf killifish at different stocking densities in static outdoor tanks. N Am J Aquacult 72:321–331. doi:10.1577/a10-001.1

    Article  Google Scholar 

  46. Howard KG (2008) Community structure, life history, and movement patterns of parrotfishes: large protogynous fishery species. University of Hawai’i, Dissertation

    Google Scholar 

  47. Kneib RT, Stiven AE (1978) Growth, reproduction, and feeding of Fundulus heteroclitus (L.) on a North Carolina salt marsh. J Exp Mar Biol Ecol 31:121–140

    Article  Google Scholar 

  48. Lipcius RN, Subrahmanyam CB (1986) Temporal factors influencing killifish abundance and recruitment in Gulf of Mexico salt marshes. Estuar Coast Shelf S 22:101–114. doi:10.1016/0272-7714(86)90026-0

    Article  Google Scholar 

  49. López-Duarte PC, Fodrie FJ, Jensen OP, Whitehead A, Galvez F, Dubansky B, Able KW (2016) Is Exposure to Macondo Oil Reflected in the Otolith Chemistry of Marsh-Resident Fish? PLoS One 11:e0162699. doi:10.1371/journal.pone.0162699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mann RHK (1971) The populations, growth and production of fish in four small streams in southern England. J Anim Ecol 40:155–190

    Article  Google Scholar 

  51. Mapstone BD (1988) Determination of patterns in the abundance of Pomacentrus moluccensis Bleeker on the southern Great Barrier Reef. Dissertation, University of Sydney

  52. Martin CW (2017) Avoidance of oil contaminated sediments by estuarine fishes. Mar Ecol Prog Ser. doi:10.3354/meps12084

  53. Martínez ML, Landry C, Boehm R, Manning S, Cheek AO, Rees BB (2006) Effects of long-term hypoxia on enzymes of carbohydrate metabolism in the Gulf killifish, Fundulus grandis. J Exp Biol 209:3851–3861. doi:10.1242/jeb.02437

    Article  PubMed  CAS  Google Scholar 

  54. McBride RS, Somarakis S, Fitzhugh GR et al (2013) Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish 16:23–57. doi:10.1111/faf.12043

    Article  Google Scholar 

  55. McCann MJ, Able KW, Christian RR et al (2017) Key taxa in food web responses to stressors: the Deepwater Horizon Oil Spill. Front Ecol Environ 15:142–149. doi:10.1002/fee.1474

    Article  Google Scholar 

  56. McElman JF, Balon EK (1979) Early ontogeny of walleye, Stizostedion vitreum, with steps of saltatory development. Environ Biol Fish 4:309–348

    Article  Google Scholar 

  57. Morales-Nin B, Panfili J (2005) Seasonality in the deep sea and tropics revisited: what can otoliths tell us? Mar Freshw Res 56:585–598. doi:10.1071/mf04150

    Article  Google Scholar 

  58. Mosegaard H, Svedäng H, Taberman K (1988) Uncoupling of somatic and otolith growth rates in Arctic char (Salvelinus alpinus) as an effect of differences in temperature response. Can J Fish Aquat Sci 45:1514–1524. doi:10.1139/f88-180

    Article  Google Scholar 

  59. Neat FC, Wright PJ, Fryer RJ (2008) Temperature effects on otolith pattern formation in Atlantic cod Gadus morhua. J Fish Biol 73:2527–2541. doi:10.1111/j.1095-8649.2008.02107.x

    Article  Google Scholar 

  60. Nelson TR, Sutton D, DeVries DR (2014) Summer movements of the Gulf killifish (Fundulus grandis) in a northern Gulf of Mexico salt marsh. Estuar Coasts 37:1295–1300. doi:10.1007/s12237-013-9762-5

    Article  Google Scholar 

  61. Nelson TR, DeVries DR, Wright RA, Gagnon JE (2015) Fundulus grandis otolith microchemistry as a metric of estuarine discrimination and oil exposure. Estuar Coasts 38:2044–2058. doi:10.1007/s12237-014-9934-y

    Article  CAS  Google Scholar 

  62. Oxenford HA, Hunte W, Deane R, Campana SE (1994) Otolith age validation and growth-rate variation in flyingfish (Hirundichthys affinis) from the eastern Caribbean. Mar Biol 118:585–592. doi:10.1007/bf00347505

    Article  Google Scholar 

  63. Palaseanu-Lovejoy M, Kranenburg C, Barras JA, Brock JC (2013) Land loss due to recent hurricanes in coastal Louisiana, USA. J Coastal Res 63:97–109. doi:10.2112/si63-009.1

    Article  Google Scholar 

  64. Pannella G (1974) Otolith growth patterns: an aid in age determination in temperate and tropical fishes. In: Bagenal TB (ed) The ageing of fish. Unwin Brothers, Surrey, pp 28–39

    Google Scholar 

  65. Pardo SA, Cooper AB, Dulvy NK (2013) Avoiding fishy growth curves. Methods Ecol Evol 4:353–360. doi:10.1111/2041-210x.12020

    Article  Google Scholar 

  66. Patterson JT (2014) Enhancement of Gulf killifish, Fundulus grandis, fitness and reproduction. Dissertation, Louisiana State University

  67. Pauly D, Soriano-Bartz M, Moreau J, Jarre-Teichmann A (1992) A new model accounting for seasonal cessation of growth in fishes. Aust J Mar Fresh Res 43:1151–1156

    Article  Google Scholar 

  68. Perschbacher PW, Aldrich DV, Strawn K (1990) Survival and growth of the early stages of Gulf killifish in various salinities. Prog Fish Cult 52:109–111

    Article  Google Scholar 

  69. Ralston S, Miyamoto GT (1981) Estimation of the age of a tropical reef fish using the density of daily growth increments. Proceedings of the Fourth International Coral Reef Symposium, Manila, vol 1. pp 83–89

  70. Ralston S, Williams HA (1989) Numerical integration of daily growth increments: An efficient means of ageing tropical fishes for stock assessment. Fish B-NOAA 87:1–16

    Google Scholar 

  71. Ricker WE (1979) Growth rates and models. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, v8. Academic Press, New York, pp 677–743

    Google Scholar 

  72. Rozas LP (1995) Hydroperiod and its influence on nekton use of the salt marsh: A pulsing ecosystem. Estuaries 18:579–590

    Article  Google Scholar 

  73. Secor DH, Henderson-Arzapalo A, Piccoli PM (1995) Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? J Exp Mar Biol Ecol 192:15–33

    Article  Google Scholar 

  74. Sklar FH, Browder JA (1998) Coastal environmental impacts brought about by alterations to freshwater flow in the Gulf of Mexico. Environ Manag 22:547–562. doi:10.1007/s002679900127

    Article  CAS  Google Scholar 

  75. Smith CL (1997) National Audubon Society field guide to tropical marine fishes of the Caribbean, the Gulf of Mexico, Florida, the Bahamas, and Bermuda. Alfred A. Knopf, Inc., New York

    Google Scholar 

  76. Stierhoff KL, Targett TE, Grecay PA (2003) Hypoxia tolerance of the mummichog: the role of access to the water surface. J Fish Biol 63:580–592. doi:10.1046/j.1095-8649.2003.00172.x

    Article  Google Scholar 

  77. Subrahmanyam CB, Drake SH (1975) Studies on the animal communities in two north Florida salt marshes, Part I. fish communities. B Mar Sci 25:445–465

    Google Scholar 

  78. Takasuka A, Oozeki Y, Aoki I et al (2008) Growth effect on the otolith and somatic size relationship in Japanese anchovy and sardine larvae. Fisheries Sci 74:308–313. doi:10.1111/j.1444-2906.2008.01519.x

    Article  CAS  Google Scholar 

  79. Tatum WM, Hawke JP, Minton RV, Trimble WC (1982) Production of bull minnows (Fundulus grandis) for the live bait market in coastal Alabama. Ala Mar Res Bull 13:1–35

    Google Scholar 

  80. Turner RE (2001) Of manatees, mangroves, and the Mississippi River: Is there an estuarine signature for the Gulf of Mexico? Estuaries 24:139–150. doi:10.2307/1352940

    Article  Google Scholar 

  81. Vastano, AR (2016) Age and growth of a subtropical marsh fish: the Gulf killifish, Fundulus grandis. M.S. Thesis, Rutgers University

  82. Victor BC (1982) Daily otolith increments and recruitment in two coral-reef wrasses, Thalassoma bifasciatum and Halichoeres bivittatus. Mar Biol 71:203–208

    Article  Google Scholar 

  83. Vivian D (2005) Examining habitat function of a restored salt marsh using post-larval Gulf killifish (Fundulus grandis Baird and Girard). M.S. Thesis, University of Southern Mississippi

  84. Vivian D, Rakocinski CF, Peterson MS (2012) Habitat function of a restored salt marsh: post-larval gulf killifish as a sentinel. In: Jordan S (ed) Estuaries: classification, ecology and human impacts. Nova Science Publishers, New York, pp 57–74

    Google Scholar 

  85. Waas BP, Strawn K (1983) Seasonal and lunar cycles in gonadosomatic indices and spawning readiness of Fundulus grandis. Contrib Mar Sci 26:127–141

    Google Scholar 

  86. Warren CE, Davis GE (1967) Laboratory studies on the feeding, bioenergetics, and growth of fish. Pacific Cooperative Water Pollution and Fisheries Research Laboratories, Agricultural Experiment Station, Oregon State University

  87. Whitehead A, Dubansky B, Bodinier C et al (2012) Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. P Natl Acad Sci USA 109:20298–20302. doi:10.1073/pnas.1109545108

    Article  Google Scholar 

  88. Williams DA, Brown SD, Crawford DL (2008) Contemporary and historical influences on the genetic structure of the estuarine-dependent Gulf killifish Fundulus grandis. Mar Ecol Prog Ser 373:111–121. doi:10.3354/meps07742

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Louisiana Universities Marine Consortium (LUMCON) for assistance with fieldwork and the Rutgers University Marine Field Station (RUMFS) for lab space and equipment. We are thankful to F. J. Fodrie, C. Filosa, and M. Rich for their invaluable assistance, to D. Vivian for supplying larval data, to M. Hernandez, J. Fiorendino, M. Gronske, and K. Rasheed for assistance dissecting out otoliths and coded wire tags, and to P. Falkowski, K. Wyman, K. Bidle, G. Taghon, and C. Fuller for use of lab equipment. The members of the NEFSC ageing lab provided a warm welcome and valuable insight. We appreciate the thoughtful comments from two anonymous reviewers who helped improve this manuscript. This research was made possible by a grant from The Gulf of Mexico Research Initiative to the Coastal Waters Consortium. The funders had no role in the design, execution, or analyses of this project. Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (doi: 10.7266/N7SF2T32).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Vastano.

Ethics declarations

All applicable institutional guidelines for the care and use of animals were followed. Research was conducted under Institutional Animal Care and Use Committee (IACUC) protocol # 88–042 “Determinants of fish habitat quality in stressed and unstressed estuaries.”

Funding

This study was funded by a grant from The Gulf of Mexico Research Initiative to the Coastal Waters Consortium.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vastano, A.R., Able, K.W., Jensen, O.P. et al. Age validation and seasonal growth patterns of a subtropical marsh fish: The Gulf Killifish, Fundulus grandis . Environ Biol Fish 100, 1315–1327 (2017). https://doi.org/10.1007/s10641-017-0645-7

Download citation

Keywords

  • Marsh fish
  • Otoliths
  • Age validation
  • von Bertalanffy
  • Gulf of Mexico