Environmental Biology of Fishes

, Volume 100, Issue 5, pp 481–491 | Cite as

Life history of the Mediterranean killifish Aphanius fasciatus in brackish water habitat of Algerian low Sahara

Article

Abstract

The Mediterranean tooth carp Aphanius fasciatus, a strongly eurythermic and euryhaline species, is an important component of the ichthyofauna in the valley of Oued Righ, situated in Algerian low Sahara. This study aims to understand the life history of this species in arid environment. A total of 1868 individuals (16.7–60.2 mm TL, 0.04–26.8 g TW) were collected between November 2010 and November 2011 from Ayata Lake (Algerian low Sahara). Individual age was determined by scalimetry. Some aspects of the sexual cycle are studied. The population was composed of 6 age classes in both sexes. Back-calculations of total length-at-age were suitably adjusted to von Bertalanffy growth model with: Lt = 80.00 [1−e−0.172 (t + 1.377)] for females and Lt = 77.58 [1−e−0.138(t + 2.236)] for males. The fitted total length-total weight relationship was W = 0.013 L2.848 for females, W = 0.013 L2.809 for males. Spawning occurs once a year between February and July with peak activity in May for Females and in April for Males. Gonado-somatic index reaches a maximum of 4.16% in males and 15.73% in females. The length at the first sexual maturity is 45 mm for both sexes.

Keywords

Aphanius fasciatus Growth Reproduction Low Sahara Algeria 

References

  1. Alcaraz C, Gholami Z, Esmaeili HR, García-Berthou E (2015) Herbivory and seasonal changes in diet of a highly endemic cyprinodontid fish (Aphanius farsicus). Environ Biol Fish 98:1541–1554CrossRefGoogle Scholar
  2. Annabi A, BenFaleh A, Deli T, Said K (2012) Molecular analysis of the genetic differentiation among Aphanius fasciatus populations captured from Tunisian coastal and estuary sites. Pak J Zool 44:1389–1396Google Scholar
  3. Annabi A, Said K, Reichenbacher B (2013) Inter-population differences in otolith morphology are gentically encoded in the killifish Aphanius fasciatus (Cyprinodontiformes). Sci Mar 2:269–279Google Scholar
  4. Bacha M, Benamirouche C, Freyhof J (2014) Critically endangered freshwater fish species ofNorth Africa likely to be extinct in the wild. Newsl IUCN SSC/WI Freshw Fish Specialist Group 4:29Google Scholar
  5. Bagenal TB, Tesch FW (1978) Age and growth. In: Bagenal TB (ed) Methods for assessment of fish production in fresh waters. Blackwell Scientific, London IBP Handbook, Vol. 3, pp 101–136Google Scholar
  6. Balon EK (1984) Pattern in the evolution of reproductive styles in fishes. In: Potts GW, Wotton RJ (eds) Fish reproduction. Academic press, London, Strategies, Tactics, pp 103–117Google Scholar
  7. Bianco PG (1995) Mediterranean endemic freshwater fishes of Italy. Biol Conserv 72:159–170CrossRefGoogle Scholar
  8. Blanco JL, Tomas H, Doadrio I (2006) A new species of the genus Aphanius (Nardo, 1832) (Actinopterygii, Cyprinodontidae) from Algeria. Zootaxa 1158:39–53Google Scholar
  9. Boumaiza M (1994) Recherches sur les eaux courantes de Tunisie. Inventaire faunistique, écologie et biogéographie. Thèse de Doctorat d’État, Faculté des Sciences, Tunis, Tunisie. 429 pGoogle Scholar
  10. Chaibi R, Si Bachir A, Chenchouni H (2015) New inland sites for the Mediterranean killifish (Aphanius fasciatus Valenciennes, 1821) in the Sahara Desert of Algeria. J Appl Ichthyol 31:1072–1076CrossRefGoogle Scholar
  11. Cimmaruta R, Scialanca F, Luccioli F, Nascetti G (2003) Genetic diversity and environmental stress in Italian populations of the Cyprinodont fish Aphanius fasciatus. Oceanol Acta 26:101–110CrossRefGoogle Scholar
  12. Fablet R, Ogor A (2005) TNPC (digital processing of calcified structures): user manualGoogle Scholar
  13. Ferrito V, Pappalardo AM, Canapa A, Barucca M, Doardrio I, Olmo E, Tigano C (2013) Mitochondrial phylogeography of the killifish Aphanius fasciatus (Teleostei, Cyprinodontidae) reveals highly divergent Mediterranean populations. Mar Biol 160:3193–3208CrossRefGoogle Scholar
  14. García N, Cuttelod A, Abdul Malak D (2010) The status and distribution of freshwater biodiversity in Northern Africa. Ed. IUCN, Gland, Switzerland, Cambridge, UK, and Malaga, Spain, p 141Google Scholar
  15. Gouasmia G, Amarouayache M, Frihi H, Kara MH (2016) Caractérisation physico-chimique de trois lacs salés permanents de la vallée d’Oued Righ (Sahara septentrional, Algérie nord-est). Rev Ecol (Terre Vie) 71(4):330–341Google Scholar
  16. Guezi R (2016) L’ichtyofaune de l’Oued Righ: biologie et dynamique de l’Acara Rouge Hemichromis bimaculatus (Gill, 1862) et de l’Aphanius de Corse Aphanius fasciatus (Nardo, 1827). PhD. Thesis. Annaba University, Algeria. 111pGoogle Scholar
  17. Guezi R, Kara MH (2015) Age, growth and reproduction of the endangered jewelfish Hemichromis bimaculatus(Cichlidae) in the valley of Oued Righ (South-eastern Algeria). Cybium 39(4):301–307Google Scholar
  18. Kara MH (2012) Freshwater fish diversity in Algeria with emphasis on alien species. Eur J Wildl Res 58:243–253CrossRefGoogle Scholar
  19. Kessabi K, Navarro A, Casado M, Saïd K, Messaoudi I, Piña B (2010) Evaluation of environmental impact on natural populations of the Mediterranean killifish Aphanius fasciatus by quantitative RNA biomarkers. Mar Environ Res 70:327–333CrossRefPubMedGoogle Scholar
  20. Kiener A, Schachter D (1974) Polymorphisme d’ Aphanius fasciatus Nardo, 1827 (Poisson Cyprinodontidae) des eaux saumatres. (Populations de Corse et de la lagune italienne de Commachio). Bull Mus Natl Hist Natuerelle 142:317–339Google Scholar
  21. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany, pp 646Google Scholar
  22. Lal B, Singh T (1987) Changes in tissue lipid levels in the freshwater catfish Clarias batrachus associated with the reproductive cycle. Fish Physiol Biochem 3:191–201CrossRefPubMedGoogle Scholar
  23. Le Berre M (1989) Faune du Sahara 1 Poissons, amphibiens, reptiles. Séries Terres africaines. Lechevalie, Chabaud R (eds), Paris p 332Google Scholar
  24. Lee RM (1920) A review of the methods of age and growth determination in fishes by means of scale. Fish Investig 4:1–32Google Scholar
  25. Leonardos I (2008) The feeding ecology of Aphanius fasciatus (Valenciennes, 1821) in the lagoonal system of Messolongi (western Greece). Sci Mar 72:393–401CrossRefGoogle Scholar
  26. Leonardos I, Sinis A (1998) Reproductive strategy of Aphanius fasciatus Nardo, 1827 (Pisces: Cyprinodontidae) in the Mesolongi and Etolikon lagoons (W. Greece). Fish Res 35:171–181CrossRefGoogle Scholar
  27. Leonardos I, Sinis A (1999a) Age growth and mortality of Aphanius fasciatus (Nardo, 1827) (PISCES: CYPRINODONTIDAE) in the Mesolongi and Etolikon lagoons (WESTERN GREECE). Contrib Zoogeography Ecol East Mediterr Region 1:327–335Google Scholar
  28. Leonardos I, Sinis A (1999b) Population age and sex structure of Aphanius fasciatus Nardo, 1827 (Pisces: Cyprinodontidae) in the Mesolongi and Etolikon lagoons (W. Greece). Fish Res 40:227–235CrossRefGoogle Scholar
  29. Leonardos J, Sinis A, Petridis D (1996) Influence of envoronmental factors on the population dynamics of Aphanius fasciatus (Nardo 1827) (Pisces: Cyprinodontidae) in the Lagoons Messolongi and Etolikon (W. Greece). Isr J Zool 42:231–249Google Scholar
  30. Mac Gregoer JS (1959) Relation between fish condition and population size in the sardine (sardinops cacrulea). US Fish Wild Fish Bull 60–166Google Scholar
  31. Maitland PS (2000) The Hamlyn guide to freshwater fish of Britain and Europe. Hamlyn, London. ROGNON P (994) Biographie d’un désert: le Sahara (ed) L’Harmattan, Paris p 347Google Scholar
  32. Maltagliati F (1998) A preliminary investigation of allozyme genetic variation and population geographical structure in Aphanius fasciatus from Italian brackish-water habitats. J Fish Biol 52:1130–1140Google Scholar
  33. Maltagliati F (1999) Genetic divergence in natural populations of the Mediterranean Brackish-water kifish Aphanius fasciatu. Mar Ecol Prog Ser 179:155–162CrossRefGoogle Scholar
  34. Maltagliati F (2002) Genetic monitoring of brackish-water populations: the Mediterranean toothcarp Aphanius fasciatus (Cyprinodontidae) as a model. Mar Ecol Prog Ser 235:257–262CrossRefGoogle Scholar
  35. Maltagliati F, Camilli L (2000) Temporal genetic variation in a population of Aphanius fasciatus (Cyprinodontidae) from a brackish-water habitat at Elba Island (Italy). Environ Boil Fish 57:107–112CrossRefGoogle Scholar
  36. Martin NB, Houlihan DF, Talbot C, Palmer RM (1993) Protein metabolism during sexual maturation in female Atlantic salmon (Salmo salar). Fish Physiol Biochem 12:131–141CrossRefPubMedGoogle Scholar
  37. Messaoudi I, Kessabi K, Kacem A, Said K (2009) Incidence of spinal deformities in natural populations of aphanius fasciatus Nardo, 1827 frome the Gulf of Gabes, Tunisia. Afr J Ecol 47:360–366CrossRefGoogle Scholar
  38. Munro JL, Pauly D (1983) A simple method for comparing growth of fishes and invertebrates. ICLARM Fishbyte 1:5–6Google Scholar
  39. Nassour I, Léger CL (1989) Deposition and mobilisation of body fat during sexual maturation in female trout (Salmo gairdneri Richardson). Aqua Liv Res 2:153–159CrossRefGoogle Scholar
  40. Pappalardo AM, Ferrito V, Messina A, Guarino F, Patarnello T, De Pinto V, Tigano C (2008) Gentics structure of the killifish Aphanius fasciatus, Nardo 1827 (Teleostei, Cyrinodontidae), results of mitochondrial DNA analysis. J Fish Biol 72:1154–1173CrossRefGoogle Scholar
  41. Penaz M, Zaki M (1985) Cyprinodont fishes of Lake Mariut, Egypt. Folia Zool 34:373–384Google Scholar
  42. Prager MH, Saila SB, Recksiek CW (1989) Fishparm: a microcomputer program for parameter estimation of nonlinear models in fishery science, second edition, Old Dominion Univ. Oceanogr Tech Rep 87–10Google Scholar
  43. Scherrer B (1984) Biostatique. Morin G (ed) Boucherville, Montréal pp 850Google Scholar
  44. Toumi I (2010) Contribution à l’étude bioécologique du peuplement ichtyologique de la région du Souf. Mémoire de Magistère en Écologie Animale. Université, Biskra, Algérie p 114Google Scholar
  45. Use of Fishes in Reserach Committee (joint committee of the American Fisheries Society, the American Institute of Fishery Research Biologists, and the American Society of Ichthyologists and Herpetologists) (2014) Guidelines for the use of fishes in research. American Fisheries Society, Bethesda, MarylandGoogle Scholar
  46. Von Bertalanffy L (1938) A quantitative theory of organic growth. Hum Biol 10:181–213Google Scholar
  47. Weatherley AH (1987) The biology of fish growth. Academic Press, London, pp 209–242Google Scholar
  48. Zouakh D, Chebel F, Bouaziz A, Kara MH (2016) Reproduction, age and growth of Tilapia zillii (Cichlidae) in Oued Righ wetland (southeast Algeria). Cybium 40(3):235–243Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Marine Bioresources LaboratoryAnnaba University Badji MokhtarAnnabaAlgeria

Personalised recommendations