Environmental Biology of Fishes

, Volume 99, Issue 11, pp 805–812 | Cite as

Effects of lunar phase on predator-prey interactions between white shark (Carcharodon carcharias) and Cape fur seals (Arctocephalus pusillus pusillus)

  • Chris Fallows
  • Monique Fallows
  • Neil HammerschlagEmail author


Predator-prey relationships can be influenced by environmental conditions, including changes in moon phase and associated lunar illumination. Two primary hypotheses have been proposed underlying the effects of moonlight on predator-prey interactions: the predation risk hypothesis and visual acuity hypothesis. However, few studies have tested these hypotheses during twilight hours or involved large mobile aquatic species. In the present study, we evaluated these hypotheses using data collected over 16 years on predator-prey interactions between white shark (Carcharodon carcharias) and Cape fur seals (Arctocephalus pusillus pusillus) at sunrise. Data from 1476 natural predation events demonstrated shark attack frequency and seal capture success was significantly higher at sunrise during periods of low (0–10 %) versus high (90–100 %) lunar illumination, which is consistent with the visual acuity hypothesis. We propose that during full moon periods, white sharks at night are at a visual and tactical advantage over seals which are silhouetted at the surface in the moonlight and thus easier to isolate in darkness, while sharks remain camouflaged hunting from below through deep water. However, at sunrise, we hypothesize this advantage shifts to seals as the added lunar illumination, combined with emerging sunlight, may decrease shark stealth and increase the ability of seals to detect and avoid sharks. These finding suggest that lunar effects on predator-prey dynamics can be context specific, likely moderated by visual acuity of predators and prey which may change according to the photoperiod.


Predator-prey interactions Sharks Seals Moon Lunar phase Predation risk 



We thank all the assistants, participants, and filmmakers throughout the years that supported this work, including the guests of Apex Shark Expeditions that made data collection possible. We especially thank Loretta Lutackas who spent months digitizing field notes and organizing all data. Thanks to Natascha Wosnick for formatting the paper. Thanks to Fiona McLellan for data and field assistance. We are grateful to the crew of Apex Shark Expeditions for their daily assistance in data collection. This work was conducted under permits from the South African Department of Environmental Affairs and with permission from the University of Miami Institutional Animal Welfare and Care Committee. We thank the reviewers for their comments which helped strengthen our manuscript.


  1. Busch M, Burroni NE (2015) Foraging activity of commensal Mus musculus in semi-captivity conditions. Effect of predator odours, previous experience and moonlight. Pest Manag Sci 71(12):1599–1604. doi: 10.1002/ps.3962 PubMedCrossRefGoogle Scholar
  2. Casper BM, Mann DA (2007) Dipole hearing measurements in elasmobranch fishes. J Exp Biol 210(1):75–81. doi: 10.1242/jeb.02617 PubMedCrossRefGoogle Scholar
  3. Clarke JA (1983) Moonlight’s influence on predator/prey interactions between short-eared owls (Asio flammeus) and deermice (Peromyscus maniculatus. Behav Ecol Sociobiol 13(3):205–209. doi: 10.1007/BF00299924 CrossRefGoogle Scholar
  4. Creel S and Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23(4): 194. doi: 10.1016/j.tree.2007.12.004
  5. Creel S, Winnie JA, Christianson D. Jr., Liley S (2008) Time and space in general models of antipredator response: tests with wolves and elk. Anim Behav 76: 1139e1146. doi: 10.1016/j.anbehav.2008.07.006
  6. Daly M, Behrends PR, Wilson MI, Jacobs LF (1992) Behavioural modulation of predation risk: moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim Behav 44(1):1–9. doi: 10.1016/S0003-3472(05)80748-1 CrossRefGoogle Scholar
  7. De Vos A, Justin O’Riain M, Meyer MA, Kotze PGH, Kock AA (2015) Behavior of Cape fur seals (Arctocephalus pusillus pusillus) in relation to temporal variation in predation risk by white sharks (Carcharodon carcharias) around a seal rookery in False Bay, South Africa. Mar Mam Sci 31(3):1118–1131. doi: 10.1111/mms.12208 CrossRefGoogle Scholar
  8. Domeier ML, Nasby-Lucas N, Lam CH (2012) Fine-scale habitat use by white sharks at Guadalupe Island, Mexico. Page 121–132 In: Domeier ML. editor. Global perspectives on the biology and life history of the white shark. Boca Raton, FL CRC Press, pp. 121–132Google Scholar
  9. Ellis DV (1986) Animal behaviour and its applications. Lewis Publishers, Inc., Chelsea, p. 329Google Scholar
  10. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JB, Marquis RJ (2011) Trophic downgrading of planet earth. Science 333(6040): 301–306.Google Scholar
  11. Fallows C, Martin RA, Hammerschlag N (2012) Comparisons between white shark-pinniped interactions at Seal Island (South Africa) with other sites in California. In: Domeier ML. editor. Global Perspectives on the Biology and Life History of the White Sharks Boca Raton, Florida CRC Press p. 105–117.Google Scholar
  12. Fay RR, Kendall JI, Popper AN, Tester AL (1974) Vibration detection by the macula neglecta of sharks. Comp Biochem Physiol (A) 47(4):1235–1240. doi: 10.1016/0300–9629(74)90097–8 CrossRefGoogle Scholar
  13. Ferner MC, Smee DL, Weissburg MJ (2009) Habitat com-plexity alters lethal and non-lethal olfactory interactions between predators and prey. Mar Ecol Prog Ser 374:13–22CrossRefGoogle Scholar
  14. Gardiner JM, Atema J (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210(11):1925–1934. doi: 10.1242/jeb.000075 PubMedCrossRefGoogle Scholar
  15. Gardiner JM and Atema J (2014) Flow sensing in sharks: lateral line contributions to navigation and prey capture. In: Bleckmann H, Joachim M, Coombs SL. editors. Flow sensing in air and water Berlin Heidelberg, Springer. p. 127–146.Google Scholar
  16. Gruber SH, Cohen JL (1985) Visual system of the white shark, Carcharodon carcharias, with emphasis on retinal structure. Memoirs Southern California. Acad Sci 9:61–72Google Scholar
  17. Hammerschlag N, Martin RA, Fallows C (2006) Effects of environmental conditions on predator–prey interactions between white sharks (Carcharodon carcharias) and cape fur seals (Arctocephalus pusillus pusillus) at Seal Island, South Africa. Environ Biol Fish 76(2–4):341–350. doi: 10.1007/s10641-006-9038-z CrossRefGoogle Scholar
  18. Huveneeers C, Holman D, Robbins R, Fox A, Endler JA, Taylor AH (2015) White sharks exploit the sun during predatory approaches. Am Nat 185(4):562–570. doi: 10.1086/680010 CrossRefGoogle Scholar
  19. Jewell OJD, Johnson RL, Gennari E, Bester MN (2013) Fine scale movements and activity areas of white sharks (Carcharodon carcharias) in Mossel Bay, South Africa. Environ Biol Fish 96:881. doi: 10.1007/s10641-012-0084-4 CrossRefGoogle Scholar
  20. Klimley AP, Le Boeuf BJ, Cantara KM, Richert JE, Davis SF, Van Sommeran S, Kelly JT (2001) The hunting strategy of white sharks (Carcharodon carcharias) near a seal colony. Mar Biol 138:617–636. doi: 10.1007/s002270000489 CrossRefGoogle Scholar
  21. Kock A, O’Riain MJ, Mauff KM, Meÿer M, Kotze D, Griffiths C (2013) Residency, habitat use and sexual segregation of white sharks, Carcharodon carcharias in False Bay, South Africa. PLoS One 8:e55048. doi: 10.1371/journal.pone.0055048 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kotler BP, Brown JS, Dall SRX, Gresser S, Ganey D, Bouskila A (2002) Foraging games between gerbils and their predators: temporal dynamics of resource depletion and apprehension in gerbils. Evol Ecol Res 4: 495e518.Google Scholar
  23. Kotler BP, Brown J, Mukherjee S, Berger-Tal O, Bouskila, A (2010) Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging. Proc R Soc Lond [Biol] 277(1687): 1469–1474. doi: 10.1098/rspb.2009.2036
  24. Laroche RK, Kock AA, Dill LM, Oosthuizen WH (2008) Running the gauntlet: a predator–prey game between sharks and two age classes of seals. Anim Behav 76(6):1901–1917. doi: 10.1016/j.anbehav.2008.06.025 CrossRefGoogle Scholar
  25. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68(4):619–640. doi: 10.1139/z90-092 CrossRefGoogle Scholar
  26. Martin RA, Hammerschlag N (2012) Marine predator–prey contests: ambush and speed versus vigilance and agility. Mar Biol Res 8(1):90–94. doi: 10.1080/17451000.2011.614255 CrossRefGoogle Scholar
  27. Martin RA, Hammerschlag N, Collier RS, Fallows C (2005) Predatory behaviour of white sharks (Carcharodon carcharias) at Seal Island, South Africa. J Mar Biol Assoc UK 85(05):1121–1135. doi: 10.1017/S002531540501218X CrossRefGoogle Scholar
  28. Martin RA, Rossmo DK, Hammerschlag N (2009) Hunting patterns and geographic profiling of white shark predation. J Zool 279(2):111–118. doi: 10.1111/j.1469-7998.2009.00586.x CrossRefGoogle Scholar
  29. Maruska KP (2001) Morphology of the mechanosensory lateral line system in elasmobranch fishes: ecological and behavioral considerations. In: Tricas TC and Gruber SH. editors. The behavior and sensory biology of elasmobranch fishes: an anthology in memory of Donald Richard Nelson Netherlands. Springer. p. 47–75.Google Scholar
  30. Mougeot F, Bretagnolle V (2000) Predation risk and moonlight avoidance in nocturnal seabirds. J Avian Biol 31(3):376–386. doi: 10.1034/j.1600-048X.2000.310314.x CrossRefGoogle Scholar
  31. Mukherjee S, Zelcer M, Kotler BP (2009) Patch use in time and space for a meso-predator in a risky world. Oecologia, 159: 661e668. doi: 10.1007/s00442-008-1243-3
  32. Penteriani V, Kuparinen A, del Mar Delgado M, Lourenço R, Campioni L (2011) Individual status, foraging effort and need for conspicuousness shape behavioural responses of a predator to moon phases. Anim Behav 82(2):413–420. doi: 10.1016/j.anbehav.2011.05.027 CrossRefGoogle Scholar
  33. Penteriani V, Kuparinen A, del Mar Delgado M, Palomares F, López-Bao JV, Fedriani JM, Calzada J, Moreno S, Villafuerte R, Campioni L, Lourenço R (2013) Responses of a top and a meso predator and their prey to moon phases. Oecologia 173(3):753–766. doi: 10.1007/s00442-013-2651-6 PubMedCrossRefGoogle Scholar
  34. Prugh LR, Golden CD (2014) Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J Anim Ecol 83(2):504–514. doi: 10.1111/1365-2656.12148 PubMedCrossRefGoogle Scholar
  35. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343(6167): 1241484. doi: 10.1126/science.1241484
  36. Towner AV, Leos-Barajas V, Langrock R, Schick RS, Smale MJ, Kaschke T, Jewell OJ, Papastamatiou YP (2016) Sex-specific and individual preferences for hunting strategies in white sharks. Funct Ecol. doi: 10.1111/1365–2435.12613 Google Scholar
  37. Trillmich F, Mohren W (1981) Effects of the lunar cycle on the Galapagos fur seal, Arctocephalus galapagoensis. Oecologia 48(1):85–92. doi: 10.1007/BF00346992 CrossRefGoogle Scholar
  38. Upham NS, Hafner JC (2013) Do nocturnal rodents in the Great Basin desert avoid moonlight? J Mammal 94(1):59–72. doi: 10.1644/12-MAMM-A-076.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Apex Shark ExpeditionsCape TownSouth Africa
  2. 2.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  3. 3.Leonard and Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesUSA

Personalised recommendations