Environmental Biology of Fishes

, Volume 99, Issue 8–9, pp 647–658 | Cite as

Morphologic and trophic diversity of fish assemblages in rapids of the Xingu River, a major Amazon tributary and region of endemism

  • Mario Alejandro Zuluaga-Gómez
  • Daniel B. FitzgeraldEmail author
  • Tommaso Giarrizzo
  • Kirk O. Winemiller


Increasing hydropower expansion in hyper-diverse tropical river basins is currently threatening aquatic biodiversity on an unprecedented scale. Among the largest and most controversial of these projects is the Belo Monte Hydroelectric Complex being constructed on the Xingu River, a major Amazon tributary in Brazil. Despite the potentially large impacts, almost no baseline ecological data are available for the river’s diverse ichthyofauna. This study uses ecomorphology and stable isotope analysis to explore the functional and trophic relationships among four of the dominant families within the Xingu River rapids (Loricariidae, Cichlidae, Anostomidae, and Serrasalmidae). Morphological analysis revealed clear separation of these families based on functional traits associated with microhabitat use and foraging strategies, with the Loricariidae and Cichlidae displaying greatest functional diversity. The four families analyzed were not clearly differentiated in isotopic space defined by δ13C and δ15N values. Considerable overlap was observed among isotopic niches and all four families primarily assimilated material originating from phytomicrobenthos (assumed to be mainly benthic algae). Differences between morphological and trophic diversity within families provide insight into how this diverse assemblage may be partitioning niche space, which in turn has implications for population responses to hydrologic alteration.


Rheophilic Neotropics Anostomidae Cichlidae Loricariidae Serrasalmidae Stable isotope Functional traits 



MAZG and TG were funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). TG acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 308278/2012-7) and Fundação de Amparo a Pesquisa do Estado do Pará (FAPESPA 011/2015). DBF and KOW are grateful for support from the US National Science Foundation (IGERT 0654377 and DEB 1257813), a Texas A&M University (TAMU) Merit Fellowship (DBF), and funding donated from the estate of George and Caroline Kelso (KOW). The TAMU Animal Care and Use Committee approved all research.


  1. Abrantes KG, Barnett A, Bouillon S (2014) Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries. Funct Ecol 28(1):270–282. doi: 10.1111/1365-2435.12155 CrossRefGoogle Scholar
  2. Albrecht MP, Caramaschi ÉP (2003) Feeding ecology of Leporinus friderici (Teleostei; Anostomidae) in the upper Tocantins River, Central Brazil, before and after installation of a hydroelectric plant. Stud Neotropical Fauna Environ 38(1):33–40CrossRefGoogle Scholar
  3. Camargo M, Giarrizzo T, Isaac V (2004) Review of the geographic distribution of fish fauna of the Xingu River Basin, Brazil. Ecotropica 10:123–147Google Scholar
  4. Core Team R (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  5. Fearnside PM (2006) Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River basin. Environ Manag 38(1):16–27. doi: 10.1007/s00267-005-0113-6 CrossRefGoogle Scholar
  6. Franssen NR, Harris J, Clark SR, Schaefer JF, Stewart LK (2013) Shared and unique morphological responses of stream fishes to anthropogenic habitat alteration. P Roy Soc B-Biol Sci 280(1752). doi: 10.1098/rspb.2012.2715
  7. Frimpong EA, Angermeier PL (2010) Trait-based approaches in the analysis of stream fish communities. Am Fish Soc Symp 73:109–136Google Scholar
  8. Gery J (1977) Characoids of the world. Publications, Neptune City, NJ, T.F.HGoogle Scholar
  9. Gido KB, Schaefer JF, Falke JA (2009) Convergence of fish communities from the littoral zone of reservoirs. Freshw Biol 54(6):1163–1177. doi: 10.1111/j.1365-2427.2008.02162.x CrossRefGoogle Scholar
  10. Hall SR (2004) Stoichiometrically explicit competition between grazers: Species replacement, coexistence, and priority effects along resource supply gradients. Am Nat 164(2):157–172. doi: 10.1086/422201 CrossRefPubMedGoogle Scholar
  11. Hoeinghaus DJ, Winemiller KO, Agostinho AA (2008) Hydrogeomorphology and river impoundment affect food-chain length of diverse Neotropical food webs. Oikos 117:984–995CrossRefGoogle Scholar
  12. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80(3):595–602. doi: 10.1111/j.1365-2656.2011.01806.x CrossRefPubMedGoogle Scholar
  13. Jackson MC, Donohue I, Jackson AL, Britton JR, Harper DM, Grey J (2012) Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7(2):e31757. doi: 10.1371/journal.pone.0031757 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jégu M (2003) Serrasalminae (Pacus and piranhas). In: Reis RE, Kullander SO, Feraris CJ (eds) Checklist of the Freshwater Fishes of South and Central America. Edipucrs, Porto Alegre, Brasil, pp. 182–196Google Scholar
  15. Jegu M, Zuanon J (2005) Threatened fishes of the world: Ossubtus xinguense (Jegu 1992) (Characidae: Serrasalminae). Environ Biol Fish 73(4):414–414. doi: 10.1007/s10641-004-4230-5 CrossRefGoogle Scholar
  16. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dogde DP (ed) Proceedings of the international large rivers symposium, Ottawa, p 110–127Google Scholar
  17. Lamouroux N, Poff NL, Angermeier PL (2002) Intercontinental convergence of stream fish community traits along geomorphic and hydraulic gradients. Ecology 83(7):1792–1807. doi: 10.2307/3071765 CrossRefGoogle Scholar
  18. Laughlin DC (2014) Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol Lett 17(7):771–784. doi: 10.1111/ele.12288 CrossRefPubMedGoogle Scholar
  19. Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can Stable Isotope Ratios Provide for Community-Wide Measures of Trophic Structure? Ecology 88(1):42–48CrossRefPubMedGoogle Scholar
  20. Layman CA et al. (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87(3):545–562. doi: 10.1111/J.1469-185x.2011.00208.X CrossRefPubMedGoogle Scholar
  21. Lujan NK, Armbruster JW (2012) Morphological and functional diversity of the mandible in suckermouth armored catfishes (Siluriformes: Loricariidae). J Morphol 273(1):24–39. doi: 10.1002/Jmor.11003 CrossRefPubMedGoogle Scholar
  22. Lujan NK, Conway KW (2015) Life in the fast lane: a review of rheophily in freshwater fishes. In: Tobler M, Plath M (eds) Riesch R. Springer International Publishing, Extremophile Fishes, pp. 107–136Google Scholar
  23. Lujan NK, Winemiller KO, Armbruster JW (2012) Trophic diversity in the evolution and community assembly of loricariid catfishes. BMC Evol Biol 12:124 doi: 10.1186/1471-2148-12-124
  24. Lujan NK, Armbruster JW, Lovejoy NR, Lopez-Fernandez H (2015) Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae. Mol Phylogenet Evol 82:269–288. doi: 10.1016/j.ympev.2014.08.020 CrossRefPubMedGoogle Scholar
  25. McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2):378–390. doi: 10.1034/j.1600-0706.2003.12098.x CrossRefGoogle Scholar
  26. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185. doi: 10.1016/j.tree.2006.02.002 CrossRefPubMedGoogle Scholar
  27. Mill AC, Pinnegar JK, Polunin NVC (2007) Explaining isotope trophic-step fractionation: why herbivorous fish are different. Funct Ecol 21(6):1137–1145. doi: 10.1111/j.1365-2435.2007.01330.x CrossRefGoogle Scholar
  28. Mims MC, Olden JD (2012) Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93(1):35–45CrossRefPubMedGoogle Scholar
  29. Montana CG, Winemiller KO (2013) Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis. Biol J Linn Soc 109(1):146–164. doi: 10.1111/Bij.12021 CrossRefGoogle Scholar
  30. Mouillot D, Graham NAJ, Villeger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28(3):167–177. doi: 10.1016/J.Tree.2012.10.004 CrossRefPubMedGoogle Scholar
  31. Parnell A, Jackson A (2013) siar: stable isotope analysis in r. R package version 4.2:
  32. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5(3):e9672. doi: 10.1371/journal.pone.0009672 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pease AA, Gonzalez-Diaz AA, Rodiles-Hernandez R, Winemiller KO (2012) Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshw Biol 57(5):1060–1075. doi: 10.1111/j.1365-2427.2012.02768.x CrossRefGoogle Scholar
  34. Planquette P, Keith P, Le Bail P-Y (1996) Atlas des poissons d'eau douce de Guyane Tome 1 edn. Museum National d'Histoire Naturelle, Service du Patrimoine Naturel, Paris.Google Scholar
  35. Poff NL, Allan JD (1995) Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76(2):606–627CrossRefGoogle Scholar
  36. Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152(1):179–189. doi: 10.1007/s00442-006-0630-x CrossRefPubMedGoogle Scholar
  37. Relyea RA (2004) Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85(1):172–179Google Scholar
  38. Roach KA (2013) Environmental factors affecting incorporation of terrestrial material into large river food webs. Freshw Sci 32(1):283–298 doi: 10.1899/12-063.1
  39. Roach KA, Winemiller KO, Davis SE (2014) Autochthonous production in shallow littoral zones of five floodplain rivers: effects of flow, turbidity and nutrients. Freshw Biol 59(6):1278–1293. doi: 10.1111/fwb.12347 CrossRefGoogle Scholar
  40. Rodrigues SK (1993) Neotectônica e sedimentação quaternária da região a “Volta Grande” do rio Xingu, Altamira. PA. Universidade de São Paulo, São Paulo, BrazilGoogle Scholar
  41. Rolls RJ, Sternberg D (2015) Can species traits predict the susceptibility of riverine fish to water resource development? An Australian case study. Environ Manag 55(6):1315–1326. doi: 10.1007/s00267-015-0462-8 CrossRefGoogle Scholar
  42. Santos GM, Mérona B, Juras AA, Jégu M (2004) Peixes do Baixo Rio Tocantins: vinte anos depois da Usina Hidrelétrica de Tucuruí. Electronote, Brasília, p. 215Google Scholar
  43. Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet delta(15)N enrichment: a meta-analysis. Oecologia 136(2):169–182. doi: 10.1007/s00442-003-1270-z CrossRefPubMedGoogle Scholar
  44. Verberk WCEP, van Noordwijk CGE, Hildrew AG (2013) Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshw Sci 32(2):531–547. doi: 10.1899/12-092.1 CrossRefGoogle Scholar
  45. Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61(4):343–365CrossRefGoogle Scholar
  46. Winemiller KO (2005) Floodplain river food webs: generalizations and implications for fisheries management. In: Welcomme R, Petr T (eds) International Symposium on the Management of Large Rivers for Fisheries. Bangkok, Thailand, pp. 285–309Google Scholar
  47. Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, et al. (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351(6269):128–129CrossRefPubMedGoogle Scholar
  48. Wootton JT, Parker MS, Power ME (1996) Effects of disturbance on river food webs. Science 273(5281):1558–1561CrossRefGoogle Scholar
  49. Zuanon J (1999) História natural da ictiofauna de corredeiras do rio Xingu, na região de Altamira. Universidade Estadual de Campinas, Campinas, Brazil, ParáGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Mario Alejandro Zuluaga-Gómez
    • 1
  • Daniel B. Fitzgerald
    • 2
    Email author
  • Tommaso Giarrizzo
    • 1
  • Kirk O. Winemiller
    • 2
  1. 1.Laboratório de Biologia Pesqueria - Manejo dos Recursos AquáticosUniversidade Federal do ParaBelemBrazil
  2. 2.Program in Ecology and Evolutionary Biology and Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations