Environmental Biology of Fishes

, Volume 99, Issue 6–7, pp 571–579

Invasive Red Lionfish (Pterois volitans) grow faster in the Atlantic Ocean than in their native Pacific range

  • Timothy J. Pusack
  • Cassandra E. Benkwitt
  • Katherine Cure
  • Tye L. Kindinger
Article

Abstract

Invasive Red Lionfish (Pterois volitans) continue to spread along tropical and subtropical coasts of the Western Atlantic, Caribbean, and Gulf of Mexico. They may have escaped natural controls present in their native Pacific, thus facilitating their immense success as predators in the Atlantic. We hypothesized that such ecological release would translate into faster individual growth and larger average body lengths in the invaded range relative to the native range. We used mark-release-recapture methods to monitor lionfish growth in two island systems in both the Pacific and the Atlantic. We compared the average individual lionfish growth rates among all four islands and between the two oceans, and compared population-level von Bertalanffy growth functions between oceans. While our study was limited to two sites in each ocean basin, we found consistent growth patterns within oceans and a significant difference between oceans, with lionfish in the Atlantic growing 1.25 to 2.25 times faster than lionfish in the Pacific. The von Bertalanffy model predicted larger average asymptotic lengths for the Atlantic population (322 vs. 225 mm). Given that lionfish consume prey up to half their body length, and that larger lionfish may be less vulnerable to predation, these findings, if broadly representative, suggest that invasive lionfish may consume larger native fish and may have higher survival than lionfish in their native range.

Keywords

Coral reef fish Ecological release Growth Invasion Mark-release-recapture Von Bertalanffy 

References

  1. Adlard RD, Lester RD (1994) Dynamics of the interaction between the parasitic isopod, Anilocra pomacentri, And the coral reef fish, Chromis nitida. Parasitology 109:311–324CrossRefPubMedGoogle Scholar
  2. Ahrenholz DW, Morris JA Jr (2010) Larval duration of the lionfish, Pterois volitans, along the Bahamian Archipelago. Environ Biol Fish 88:305–309CrossRefGoogle Scholar
  3. Akins JL, Morris JA Jr, Green SJ (2014) In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish. Ecol Evol 4:3768–3777CrossRefPubMedPubMedCentralGoogle Scholar
  4. Albins MA (2013) Effects of invasive Pacific red lionfish Pterois volitans versus a native predators on Bahamian coral-reef fish communities. Biol Invasions 15:29–43CrossRefGoogle Scholar
  5. Albins MA (2015) Invasive Pacific lionfish Pterois volitans reduce abundance and species richness of native Bahamian coral-reef fishes. Mar Ecol Prog Ser 522:231–243CrossRefGoogle Scholar
  6. Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish (Pterois volitans) reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238CrossRefGoogle Scholar
  7. Albins MA, Hixon MA (2013) Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ Biol Fish 96: 1151–1157Google Scholar
  8. Albins MA, Lyons PJ (2012) Invasive red lionfish Pterois volitans blow direct jets of water at prey fish. Mar Ecol Prog Ser 448:1–5CrossRefGoogle Scholar
  9. Anton A, Cure K, Layman CA, Puntila R, Simpson MS, Bruno JF (2016) Prey naiveté to invasive lionfish Pterois volitans on Caribbean coral reefs. Mar Ecol Prog Ser 544:257–269CrossRefGoogle Scholar
  10. Ascherl Z, Williams EH, Williams LB, Tuttle LJ, Sikkel PC, Hixon MA (2014) Parasitism in the Pterois volitans (Scorpaenidae) from coastal waters from Puerto Rico, The Cayman Islands, and the Bahamas. J Parasitol. doi:10.1645/13-422.1 Google Scholar
  11. Atkinson D (1994) Temperature and organism size – a biological law for ectotherms? Adv Ecol Res 25:1–58CrossRefGoogle Scholar
  12. Barbour AB, Allen MS, Frazer TK, Sherman KD (2011) Evaluating the Potential Efficacy of Invasive Lionfish (Pterois volitans) Removals. PLoS One 6(5):e19666. doi:10.1371/journal.pone.0019666 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Benkwitt CE (2013) Density-dependent growth in invasive lionfish (Pterois volitans). PLoS One 8: e66995Google Scholar
  14. Benkwitt CE (2015) Non-linear effects of invasive lionfish density on native coral-reef fish communities. Biol Invasions 17:1383–1395CrossRefGoogle Scholar
  15. Berumen ML (2005) The importance of juveniles in modeling growth: butterflyfish at Lizard Island. Environ Biol Fish 72:409–413CrossRefGoogle Scholar
  16. Bernadsky G, Goulet D (1991) A natural predator of the lionfish Pterois miles. Copeia 1991:230–231CrossRefGoogle Scholar
  17. Bertalanffy LV (1938) A quantitative theory of organic growth (inquiries on growth laws II). Hum Biol 10:181–213Google Scholar
  18. Betancur-R R, Hines A, Acero AP, Ortí G, Wilbur AE, Freshwater DW (2011) Reconstructing the lionfish invasion: insights into the Greater Caribbean biogeography. J Biogeogr 38:1281–1293CrossRefGoogle Scholar
  19. Beverton RJH (1992) Patterns of reproductive strategy parameters in some marine teleost fishes. J Fish Biol 41:137–160CrossRefGoogle Scholar
  20. Birkeland C, Dayton PK (2005) The importance in fisheries management of leaving the big ones. TREE 20:356–358PubMedGoogle Scholar
  21. Biggs CR, Olden JD (2011) Multi-scale habitat occupancy of invasive lionfish (Pterois volitans) in coral reef environments of Roatan, Honduras. Aquat Invasions 6:347–353CrossRefGoogle Scholar
  22. Bruno JF, Valdivia A, Hackerott S, Cox CE, Green S, Côté I, Akins L, Layman C, Precht W (2013) Testing the grouper biocontrol hypothesis: a response to Mumby et al. 2013. PeerJ PrePrints 1:e139v1. doi:10.7287/peerj.preprints.139v1 Google Scholar
  23. Bullard SA, Barse AM, Curran SS, Morris JA Jr (2011) First record of a Digenean from invasive Lionfish, Pterois cf. volitans, (Scorpaeniformes: Scorpaenidae) in the Northwestern Atlantic Ocean. J Parasitol 97:833–837CrossRefPubMedGoogle Scholar
  24. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96Google Scholar
  25. Choat JH, Roberston DR, Ackerman JL, Posada JM (2003) An age-based demographic analysis of the Caribbean stoplight parrotfish Sparisoma viride. MEPS 246:265–277CrossRefGoogle Scholar
  26. Cure K, Benkwitt CE, Kindinger TL, Pickering EA, Pusack TJ, McIlwain JL, Hixon MA (2012) Comparative behavior of red lionfish Pterois volitans on native Pacific verse invaded Atlantic coral reefs. Mar Ecol Prog Ser 467:181–192CrossRefGoogle Scholar
  27. Edwards MA, Frazer TK, Jacoby CA (2014) Age and growth of invasive lionfish (Pterois spp.) in the Caribbean Sea, with implications for management. Bull Mar Sci 90:953–966Google Scholar
  28. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London, UKCrossRefGoogle Scholar
  29. Finley RJ, Forrester GE (2003) Impact of ectoparasites on the demography of a small reef fish. Mar Ecol Prog Ser 248:305–309CrossRefGoogle Scholar
  30. Fogg AQ, Hoffmayer ER, Driggers WB III, Campbell MD, Pellegrin GJ, Stein W (2013) Distribution and length frequency of invasive lionfish (Pterois sp.) in the norther Gulf of Mexico. Gulf Caribb Res 25:111–115CrossRefGoogle Scholar
  31. Freshwater DW, Hines A, Parham S, Wilbur A, Sabaoun M, Woodhead J, Akins L, Purdey B, Whitefield PE, Paris CB (2009) Mitochondrial control region sequence analyses indicate dispersal from the US East Coast as the source of the invasive Indo-Pacific lionfish Pterois volitans in the Bahamas. Mar Biol 156:1213–1221CrossRefGoogle Scholar
  32. Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Holle VV (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17CrossRefPubMedGoogle Scholar
  33. Green SJ, Côté IM (2009) Record densities of Indo-Pacific lionfish on Bahamian coral reefs. Coral Reefs 28:107CrossRefGoogle Scholar
  34. Green SJ, Akins JL, Maljkovic´ A, Cote IM (2012) Invasive lionfish drive Atlantic coral reef fish declines. PLoS One 7:e32596Google Scholar
  35. Green SJ, Tamburello N, Miller SE, Akins JL, Côté IM (2013) Habitat complexity and fish size affect the detection of Indo-Pacific lionfish on invaded coral reefs. Coral Reefs 32:413–421CrossRefGoogle Scholar
  36. Gulland JA, Holt SJ (1959) Estimation of growth parameters for data at unequal time intervals. J du Conseil 25:47–49Google Scholar
  37. Hackerott S, Valdivia A, Green SJ, Côté IM, Cox CE, Akins L, Layman CA, Precht WF, Bruno JF (2013) Native predators do not influence invasion success of pacific Lionfish on Caribbean reefs. PLoS One 8:e68259CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hamner RM, Freshwater DW, Whitfield PE (2007) Mitochondrial cytochrome b analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic. J. Fish Biol 71:214–222CrossRefGoogle Scholar
  39. Heger T, Jeschke JM (2014) The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123:741–750CrossRefGoogle Scholar
  40. Kochzius M, Soller R, Khalaf MA, Blohm D (2003) Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences. Mol Phylogenet Evol 28:296–403CrossRefGoogle Scholar
  41. Kulbicki M, Beets J, Chabanet P, Cure K, Darling E, Floeter SR, Galzin R, Green A, Harmelin-Vivien M, Hixon M, Letourneur Y, Lison de Loma T, McClanahan T, McIlwain J, MouTham G, Myers R, O’Leary JK, Planes S, Vigliola L, Wantiez L (2012) Distributions of Indo-Pacific lionfishes Pterois spp. in their native ranges: implications for the Atlantic invasion. Mar Ecol Prog Ser 446:189–205CrossRefGoogle Scholar
  42. Lönnstedt OM, McCormick MI (2013) Ultimate Predators: Lionfish have evolved to circumvent prey rish assessment abilities. PLoS One 8: e75781Google Scholar
  43. Love MS, Yoklavich M, Thorsteinson L (2002) The rockfishes of the northeast Pacific. University of California Press, Berkeley, CAGoogle Scholar
  44. Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 9:1397–1401CrossRefGoogle Scholar
  45. Maljković A, Van Leeuwen TE, Cove SN (2008) Predation on the invasive red lionfish, Pterois volitans (Pisces: Scorpaenidae), by native groupers in the Bahamas. Coral Reefs 27:501CrossRefGoogle Scholar
  46. Malone JC, Forrester GE, Steele MA (1999) Effects of subcutaneous microtags on the growth, Survival, and vulnerability to predation of small reef fishes. J Exmp Marine Biol and Ecolo 237:243–253CrossRefGoogle Scholar
  47. Marsh-Hunkin KE, Gochfeld DJ, Slattery M (2013) Antipredator responses to invasive lionfish, Pterois volitans: Interspecific difference in cue utilization by two coral reef gobies. Mar Biol 160:1029–1040Google Scholar
  48. Morris, J.A., Jr. (2012) Invasive lionfish: A guide to control and management. Gulf and Caribbean Fisheries Institute Special Publication Number 1, Marathon, Florida, USA. 113 pp.Google Scholar
  49. Morris JA, JL Akins (2009) Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environ Biol Fish 86: 389–398Google Scholar
  50. Morris JA, Whitefield PE (2009) Biology, ecology, control and management of the invasive Indo-pacific lionfish: An updated integrated Assessment. NOAA technical Memorandum NOS NCCOS 99.Google Scholar
  51. Meyer AL, Dierking J (2011) Elevated size and body condition and altered feeding ecology of the grouper Cephalopholis argus in non-native habitats. Mar Ecol Prog Ser 439:203–212CrossRefGoogle Scholar
  52. Mumby PJ, Harborne AR, Brumbaugh DR (2011) Grouper as a natural biocontrol of invasive Lionfish. PLoS One 6:e21510CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pinheiro J, Bates D, DebRoy S, Sarkar D, Development CoreTeam R (2011) nlme: linear and nonlinear mixed effects models. R package version 3:1–100Google Scholar
  54. Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59: 779–791Google Scholar
  55. R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna ISBN 3-900051-07-0, URL http://www.R-project.org/ Google Scholar
  56. Ramos-Ascherl Z, Williams EH Jr, Bunkley-Williams L, Tuttle LJ, Sikkel PC, Hixon MA (2015) Parasitism in Pterois volitans (Scorpaenidae) from Coastal Waters of Puerto Rico, the Cayman Islands, and the Bahamas. J Parasitol 101:50–56CrossRefPubMedGoogle Scholar
  57. Randall JE, Allen GR, Steene RC (1990) Fishes of the Great Barrier Reef and Coral Sea. University of Hawaii Press, Honolulu, HawaiiGoogle Scholar
  58. Raymond WW, Albins MA, Pusack TJ (2015) Competitive interactiosn for shelter between invasive Pacific red lionfish and native Nassau grouper. Environ Biol Fish 98:57–65CrossRefGoogle Scholar
  59. Robertson DR, Ackerman JL, Choat JH, Posada JM, Pitt J (2005) Ocean surgeonfish Acanthurus bahianus. I. The geography of demography. Mar Ecol Prog Ser 295:229–244CrossRefGoogle Scholar
  60. Ruttenberg BI, Haupt AJ, Chiriboga AI, Warner RR (2005) Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecol 145:–394-403leGoogle Scholar
  61. Schofield, PJ, JA Morris, Jr, JN Langston, Fuller PL (2012) Pterois volitans/miles. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/factsheet.aspx?speciesid=963 Revision Date: 9/18/2012
  62. Schultz ET (1986) Pterois volitans and Pterois miles: two valid species. Copeia 3:686–690CrossRefGoogle Scholar
  63. Sellers AJ, Ruiz GM, Leung B, Torchin ME (2015) Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans. PLoS One 10(6): e0131075Google Scholar
  64. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176CrossRefGoogle Scholar
  65. Sikkel PC, Tuttle LJ, Cure K, Coile AM, Hixon MA (2014) Low Susceptibility of Invasive Red Lionfish (Pterois volitans) to a Generalist Ectoparasite in Both Its Introduced and Native Ranges. PLoS One 9: e95854Google Scholar
  66. Sutherland WJ, Clout M, Côté IM, Daszark P, Depledge MH, Fellman L, Fleishman E, Garthwaite R, Gibbons DW, De Lurio J, Impey AJ, Lickorish F, Lindenmayer D, Madgwick J, Margerison C, Maynard T, Peck LS, Pretty J, Prior S, Redford FH, Scharlemann JPW, Spalding M, Watkinson AR (2010) A horizon scan of global conservation issues for 2010. Trends Ecol Evol 25:1–7CrossRefPubMedGoogle Scholar
  67. Switzer TS, Tremain DM, Keenan SF, Stafford CJ, Parks SL, McMicheal RH Jr (2015) Temporal and Spatial Dynamics of the Lionfish Invasion in the Eastern Gulf of Mexico: Perspectives from a Boradscale Trawl Survey. Mar Coast Fish 7:1–8CrossRefGoogle Scholar
  68. Trip EDL, Craig P, Green A, Choat JH (2014) Recruitment dynamics and first year growth of the coral reef surgeonfish Ctenochaetus striatus, with implications for acanthurid growth models. Coral Reefs 33:879–889CrossRefGoogle Scholar
  69. Valdez-Moreno M, Quintal-Lizama C, Gomez-Lozano R, Garcıa-Rivas MC (2012) Monitoring an Alien Invasion: DNA Barcoding and the Identification of Lionfish and Their Prey on Coral Reefs of the Mexican Caribbean. PLoS One 7(6):e36636. doi:10.1371/journal.pone.0036636 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Whitfield PE, Hare JA, David AW, Harter SL, Muñoz CM (2007) Abundance estimates of the Indo-Pacific lionfish Pterois volitans/miles complex in the Western North Atlantic. Biol Invasions 9:53–64CrossRefGoogle Scholar
  71. Williamson, M (1996) Biol Invasions Chapman and Hall, London, UK.Google Scholar
  72. Willis TJ, Babcock RC (1998) Retention and in situ detectability of visible implant fluorescent elastomer (VIFE) tags in Pagrus auratus (Sparidae). N Z J Mar Freshw Res 23: 247–254Google Scholar
  73. Wootton RJ (1990) Ecology of teleost fishes Second edition. Kluwer Academic publishers, Boston, MAGoogle Scholar
  74. Weatherly AH (1972) Growth and ecology of fish populations. Academic Press, New York, NYGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Timothy J. Pusack
    • 1
    • 2
  • Cassandra E. Benkwitt
    • 1
  • Katherine Cure
    • 3
  • Tye L. Kindinger
    • 1
  1. 1.Department of Integrative BiologyOregon State UniversityCorvallisUSA
  2. 2.College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA
  3. 3.School of Plant Biology, Oceans InstituteThe University of Western AustraliaCrawleyAustralia

Personalised recommendations