Environmental Biology of Fishes

, Volume 98, Issue 9, pp 1987–1997 | Cite as

Disentangling the contributions of ocean ranching and net-pen aquaculture in the successful establishment of Chinook salmon in a Patagonian basin

  • Cecilia Yanina Di Prinzio
  • Carla Riva Rossi
  • Javier Ciancio
  • John Carlos Garza
  • Ricardo Casaux
Article

Abstract

The presence of Chinook salmon in Patagonia is an example of a successful invasion by a Pacific salmon species. The combination of historical records and genetic data can help to determine the origin of invasive / introduced species and allow the identification of the sources and dispersal process. We analyzed the genetic structure of Chinook salmon in the Futaleufú River (Pacific slope basin of Patagonia) using single nucleotide polymorphism genotypes and a recently described baseline dataset of native North American Chinook salmon populations. Our results revealed that Chinook salmon established in the Futaleufú River have high levels of within-population genetic diversity compared with populations from across the native range. Based on genetic similarity and historical reports, our results indicate that the Futaleufú population was first established by colonizing fish derived from the Lower Columbia River Basin, imported into Chile for ocean ranching purposes during the 1970s and 1980s, and afterward it was strongly supplemented by escaped fish from net pen aquaculture that used broodstock imported during the 1990s from various sources, including the California Central Valley (via New Zealand), the Middle Oregon Coast, and Vancouver Island. The higher incidence of fish derived from the most recent introductions in our sample suggest that the contribution of escaped salmon from these posterior stockings on establishment success must have been particularly strong because included different sources. Subsequent admixture and hybridization among these multiple independent source stocks is likely responsible for the high level of standing genetic variation, which may be facilitating local adaptation and augmenting the opportunity for successful invasion and further colonization.

Keywords

Chinook salmon Potential origin Pacific slope basin of Patagonia 

References

  1. Anderson EC, Waples RS, Kalinowski ST (2008) An improved method for predicting the accuracy of genetic stock identification. Can J Fish Aquat Sci 65:1475–1486CrossRefGoogle Scholar
  2. Arismendi I, Penaluna BE, Dunham JB, García de Leaniz C, Soto D, Fleming IA, Gómez-Uchida D, Gajardo G, Vargas P, León-Muñoz J (2014) Differential invasion success of salmonids in southern Chile: patterns and hypotheses. Rev Fish Biol Fish 24:919–941. doi:10.1007/s11160-014-9351-0 CrossRefGoogle Scholar
  3. Astorga MP, Valenzuela C, Arismendi I, Iriarte JL (2008) Naturalized Chinook salmon in the northern Chilean Patagonia: do they originate from salmon farming? Rev Biol Mar Oceanogr 43:669–674CrossRefGoogle Scholar
  4. Basulto S (2003) El largo viaje de los salmones. Una crónica olvidada. Propagación y cultivo de especies acuáticas en Chile. [The long salmon trip: a forgotten chronicle, propagation, and cultivation of aquatic species in Chile]. Limitada M (Ed) Santiago, ChileGoogle Scholar
  5. Beacham TD, Cox-Rogers S, MacConnachia C, McIntosh B, Wallace CG (2014) Population structure and run timing of sockeye salmon in the Skeena River, British Columbia: response to comment. N Am J Fish Manag 34:1171–1176CrossRefGoogle Scholar
  6. Clemento AJ, Crandall ED, Garza JC, Anderson EC (2014) Evaluation of a SNP baseline for genetic stock identification of Chinook salmon (Oncorhynchus tshawytscha) in the California current large marine ecosystem. Fish Bull 112:112–130. doi:10.7755/FB.112.2-3.2 CrossRefGoogle Scholar
  7. Consuegra S, Phillips N, Fajardo G, Garcia de Leaniz C (2011) Winning the invasion roulette: escapes from fish farms increase admixture and facilitate establishment of non-native rainbow trout. Evol Appl 4:660–671PubMedCentralCrossRefPubMedGoogle Scholar
  8. Correa C, Gross MR (2008) Chinook salmon invade southern South America. Biol Invasions 10:615–639CrossRefGoogle Scholar
  9. Di Prinzio CY, Pascual MA (2008) The establishment of exotic Chinook salmon (Oncorhynchus tshawytscha) in Pacific rivers of Chubut, Patagonia, Argentina. Ann Limnol-Int J Lim 1:61–68Google Scholar
  10. Donaldson LR, Joyner T (1983) The salmonid fishes as a natural livestock. Sci Am 249:50–58CrossRefGoogle Scholar
  11. Dufflocq A (1981) Introducción del salmón del Pacífico en Chile, 176 pp. Ministerio de Economía, Fomento, y Reconstrucción, Subsecretaria de Pesca, Santiago de ChileGoogle Scholar
  12. FAO (Food and Agriculture Organization of the United Nations) (2011) FishStat: aquaculture production. FAO, Rome. Available at http://www.fao.org/fishery/statistics/global-aquaculture-production/
  13. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  14. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3) Available from http://www.unil.ch/izea/softwares/ Fstat.html. Updated from Goudet (1995)
  15. Grossman F (1991) Presencia de “Salmón Rey”, Oncorhynchus tshawytscha Walbaum, en cuencas de los ríos Grande y Corcovado, Prov. Del Chubut. Propuesta de pautas de manejo del recurso. Biol Acuática 15-Notas Científicas RAL 91:200–201Google Scholar
  16. Habicht C, Seeb LW, Myers KW, Farley EV, Seeb JE (2010) Summer–fall distribution of stocks of immature sockeye salmon in the Bering Sea as revealed by single-nucleotide polymorphisms. Trans Am Fish Soc 139:1171–1191. doi:10.1577/T09-149.1 CrossRefGoogle Scholar
  17. Hauser L, Seeb JE (2008) Advances in molecular technology and their impact on fisheries genetics. Fish Fish 9:473–486CrossRefGoogle Scholar
  18. Healey MC (1991) Life history of Chinook salmon (Oncorhynchus tshawytscha). In: Groot C, Margolis L (eds) Pacific salmon life histories. University of British Columbia Press, Vancouver, pp 311–393Google Scholar
  19. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  20. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94PubMedCentralCrossRefPubMedGoogle Scholar
  21. Kalinowski ST (2005) HP-rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  22. Larson WA, Utter FM, Myers KW, Templin WD, Seeb JE, Guthrie CM III, Bugaev AV, Seeb LW (2013) Single-nucleotide polymorphisms reveal distribution and migration of Chinook salmon (Oncorhynchus tshawytscha) in the Bering Sea and North Pacific Ocean. Can J Fish Aquat Sci 70:128–141CrossRefGoogle Scholar
  23. Lindbergh JM (1982) A successful transplant of Pacific salmon to Chile. Proc Gulf Caribb Fish Inst 34:81–87Google Scholar
  24. Milner GB, Teel DJ, Utter FM, Winans GA (1985) A genetic method of stock identification in mixed populations of Pacific salmon. Mar Fish Rev 47:1–8Google Scholar
  25. Moran P, Teel DJ, Banks MA, Beacham TD, Bellinger MR, Blankenship SM, Candy JR, Garza JC, Hess JE, Narum SR, Seeb LW, Templin WD, Wallace CG, Smith CT (2013) Divergent life-history races do not represent Chinook salmon coast-wide: the importance of scale in Quaternary biogeography. Can J Fish Aquat Sci 70:415–435CrossRefGoogle Scholar
  26. Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216CrossRefGoogle Scholar
  27. Naylor R, Hindar K, Fleming IA, Goldburg R, Williams S, Volpe J, Whoriskey F, Eagle J, Mangel M (2005) Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience 55:427–437CrossRefGoogle Scholar
  28. Oyarzo JG (2006) Caracterización de la colonización de Oncorhynchus tshawytscha (Walbaum; 1792) en el Río Cobarde, XI Región de Aysén. Tesis de grado Universidad Austral de Chile, pp 35Google Scholar
  29. Pascual MA, Cussac V, Dyer B, Soto D, Vigliano P, Ortubay S, Macchi P (2007) Freshwater fishes of Patagonia in the 21st century after a hundred years of human settlement, species introductions, and environmental change. Aquat Ecosys Health Manag 10:212–227CrossRefGoogle Scholar
  30. Pascual MA, Lancelotti JL, Ernst B, Ciancio JE, Aedo E, García-Asorey M (2009) Scale, connectivity, and incentives in the introduction and management of non-native species: the case of exotic salmonids in Patagonia. Front Ecol Environ 7:533–540CrossRefGoogle Scholar
  31. Quinn TP (2005) The behavior and ecology of Pacific salmon and trout. American fisheries society, Bethesda, MD. University of Washington Press, SeattleGoogle Scholar
  32. Quinn TP, Kinnison MT, Unwin MJ (2001) Evolution of Chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate and process. Genetica 112–113:493–513. doi:10.1023/A:1013348024063 CrossRefPubMedGoogle Scholar
  33. Riva Rossi CM, Pascual MA, Aedo Marchant E, Basso N, Ciancio JE, Mezga B, Fernández DA, Ernest-Elizalde B (2012) The invasion of Patagonia by Chinook salmon (Oncorhynchus tshawytscha): inferences from mitochondrial DNA patterns. Genetica 140(10–12):439–53CrossRefPubMedGoogle Scholar
  34. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  35. Satterthwaite W, Mohr MS, O’Farrell MR, Anderson EC, Banks MA, Bates SJ, Bellinger MR, Borgerson LA, Crandall ED, Garza JC, Kormos BJ, Lawson PW, Palmer-Zwahlen ML (2014) Use of genetic stock identification data for comparison of the ocean spatial distribution, size-at- age, and fishery exposure of an untagged stock and its indicator: California coastal versus Klamath River Chinook. Trans Am Fish Soc 143:117–133CrossRefGoogle Scholar
  36. Schlötterer C (2004) The evolution of molecular markers-just a matter of fashion? Nat Rev Genet 5:63–69CrossRefPubMedGoogle Scholar
  37. Seeb LW, Antonovich A, Banks MA, Beacham TD, Bellinger MR, Blankenship SM, Campbell MR, Decovich NA, Garza JC, Guthrie CM III, Lundrigan TA, Moran P, Narum SR, Stephenson JJ, Supernault JK, Teel DJ, Templin WD, Wenburg JK, Young SF, Smith CT (2007) Development of a standardized DNA database for Chinook salmon. Fisheries 32:540–552CrossRefGoogle Scholar
  38. Seeb LW, Templin WD, Sato S, Abe S, Warheit K, Park JY, Seeb JE (2011) Single nucleotide polymorphisms across a species’ range: implications for conservation studies of Pacific salmon. Mol Ecol Resour 11:195–217. doi:10.1111/j.1755-0998.2010.02966.x CrossRefPubMedGoogle Scholar
  39. Sepúlveda M, Arismendi I, Soto D, Jara F, Farias F (2013) Escaped farmed salmon and trout in Chile: incidence, impacts, and the need for an ecosystem view. Aquac Environ Interac 4:273–283CrossRefGoogle Scholar
  40. SERNAPESCA (2006) Anuario estadístico de Pesca. Servicio Nacional de Pesca, Chile, p 181Google Scholar
  41. Shaklee JB, Beacham TD, Seeb L, White BA (1999) Managing fisheries using genetic data: case studies from four species of Pacific salmon. Fish Res 43:45–78CrossRefGoogle Scholar
  42. Soto D, Jara F, Moreno C (2001) Escaped salmon in the inner seas, southern Chile: facing ecological and social conflicts. Ecol Appl 11:1750–1762CrossRefGoogle Scholar
  43. Soto D, Arismendi I, González E, Guzmán E, Sanzana J, Jara F, Jara C, Lara C (2006) Southern Chile, trout and salmon country: conditions for invasion success and challenges for biodiversity conservation. Rev Chil Hist Nat 79:97–117CrossRefGoogle Scholar
  44. Soto D, Arismendi I, Di Prinzio C, Jará F (2007) Establishment of Chinook salmon (Oncorhynchus tshawytscha) in Pacific basins of southern South América and its potential ecosystem implications. Rev Chil Hist Nat 80:81–98CrossRefGoogle Scholar
  45. Tucker S, Trudel M, Welch DW, Candy JR, Morris JFT, Thiess ME, Wallace C, Beacham TD (2011) Life history and seasonal stock-specific ocean migration of juvenile Chinook salmon. Trans Am Fish Soc 140:1101–1119. doi:10.1080/00028487.2011.607035 CrossRefGoogle Scholar
  46. Utter F, Ryman N (1993) Genetic markers and mixed stock fisheries. Fisheries 18:11–21CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cecilia Yanina Di Prinzio
    • 1
  • Carla Riva Rossi
    • 2
  • Javier Ciancio
    • 2
  • John Carlos Garza
    • 3
  • Ricardo Casaux
    • 1
  1. 1.Centro de Investigación en Ecología de Montaña y Estepa Patagónica (CIEMEP)-CONICETEsquelArgentina
  2. 2.Centro Nacional Patagónico-CONICETPuerto MadrynArgentina
  3. 3.Southwest Fisheries Science Center National Marine Fisheries ServiceUniversity of CaliforniaSanta CruzUSA

Personalised recommendations